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The realm of critical care medicine is always wait-
ing for the game-changing innovation – that elusive 
breakthrough poised to dramatically transform prac-
tice and yield remarkable results. Various contenders 
have come and gone: surfactant therapy, synthetic col-
loids, drotrecogin alfa [1-3]. While some have been 
consigned to the annals of history, a select few, such as 
low-tidal-volume ventilation, have endured [4]. Others 
re-emerge time and again, hoping that they’ll have an 
evidence-based role somewhere. The level of excite-
ment is not always correlated with the staying power 
of the innovation, and sometimes the hype can over-
shadow the reality. 

For the past decade, we witnessed repeated attempts 
to integrate artificial intelligence techniques into clini-
cal practice [5, 6]. Numerous discussions about the per-
formance of image classification or predictive models 
have led to minimal real-world progress. Most falter, as 
their performance declines when they encounter data 
beyond their training and validation sets [7-9]. Fatalist 
claims that these models would mean the end of one 
specialty or another have remained just that – claims 
[10, 11].

There is a new contender on the block: generative 
AI systems. These systems are known by various, often 
imprecise, names such as generative pre-trained trans-
formers, large language models, and neural networks. 
However, they have become almost synonymous with 
ChatGPT in the public’s mind. Proponents of Chat-
GPT predict that it will revolutionize patient care by 
expertly summarizing medical records, guiding clini-
cal decisions, and serving as a virtual consultant [12]. 
Its achievements, such as passing the USMLE Step 1 
exam, co-authoring publications, and offering medical 
advice, lend credence to this idea [13-15].

Large language models (LLMs) seem to possess 
extraordinary natural language processing abilities. 
They appear to understand, summarize, and generate 
text independently. Consequently, LLMs could swiftly 
synthesize and summarize copious amounts of medi-
cal literature, assimilate data from various patient chart 
sources, and apply the latest guidelines to support de-
cision-making—a computer boasting perfect memory 
that seemingly “comprehends” clinical context and 
pathology. However, we must ask ourselves: is this un-
derstanding genuine or are we dwelling in a Potemkin 
village?

History cautions us that enthusiasm is rarely war-
ranted in critical care. Searching for understanding 
behind the painted walls, we discover something else. 
Answers stemming not from genuine understanding, 
but from predictions [16]. What we find is a very so-
phisticated model that generates content by predicting 
which words are likely to appear in similar contexts. 
While LLMs excel when processing familiar concepts, 
they falter when confronted with abstract or unusual 
scenarios [17]. 

The distinction between a physician and a layperson 
lies not in textbooks but in experience and comprehen-
sion of disease processes. Although it is improbable 
that AI will practice independently, we are likely to see 
systems employing a human-in-the-loop strategy. By 
blending AI’s computational prowess with human cli-
nicians’ nuanced understanding, AI can function as a 
decision aid rather than a decision maker. Some prac-
titioners have already encountered this approach in the 
sepsis prediction model used by major EHRs [7]. How-
ever, they may have also observed its subpar perfor-
mance or its tendency to “cheat”, relying on clinicians 
initiating sepsis treatment to predict sepsis presence 
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[18]. It is not just an example of AI gone awry, but it 
exemplifies the ethical and practical challenges arising 
from AI algorithms’ opacity[19]. As models grow more 
complex and their decision-making processes become 
increasingly obscure, concerns about our ability to 
comprehend their recommendations arise. Sometimes, 
there is no human-friendly justification. Mistrust in the 
system undermines its role. But overreliance, or blindly 
following the system takes the human out of the loop. 

We must note AI’s potential to exacerbate exist-
ing disparities in healthcare. Bias in AI algorithms 
can originate from multiple sources, including biased 
training data, flawed model assumptions, and the im-
pact of historical practices [9, 20]. This may perpetu-
ate systemic inequalities, particularly for vulnerable or 
marginalized populations, masking the bias beneath a 
veneer of scientific impartiality, or hiding it behind an 
opaque algorithm [21].

This is not to imply that these systems lack tremen-
dous potential. When implemented appropriately, they 
could offer substantial benefits or aid in streamlining 
tedious tasks. If this enables clinicians to devote more 
time to direct patient care, it is a victory. After all, true 
care and empathy cannot be programmed.

I share the enthusiasm towards AI and my intent is 
not to diminish its potential role. Rather, I ask that we 
approach this technology with the same skepticism and 
apply the same degree of scrutiny as we do when evalu-
ating other medical interventions. The future of critical 
care will not hinge on a single, revolutionary innova-
tion, but on incremental steps, each edging us closer to 
our goal: providing the best possible care. I hope that 
AI is one of those steps, but we should remember: you 
cannot program empathy and genuine care. 
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Figure 1. PRISMA Flow Diagram of the Study Select


