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Abstract
Introduction: Early and accurate identification of high-risk patients with peripheral intravascular catheter (PIVC)-
related phlebitis is vital to prevent medical device-related complications. 

Aim of the study: This study aimed to develop and validate a machine learning-based model for predicting the inci-
dence of PIVC-related phlebitis in critically ill patients.

Materials and methods: Four machine learning models were created using data from patients ≥ 18 years with a 
newly inserted PIVC during intensive care unit admission. Models were developed and validated using a 7:3 split. 
Random survival forest (RSF) was used to create predictive models for time-to-event outcomes. Logistic regression 
with least absolute reduction and selection operator (LASSO), random forest (RF), and gradient boosting decision 
tree were used to develop predictive models that treat outcome as a binary variable. Cox proportional hazards (COX) 
and logistic regression (LR) were used as comparators for time-to-event and binary outcomes, respectively.

Results: The final cohort had 3429 PIVCs, which were divided into the development cohort (2400 PIVCs) and vali-
dation cohort (1029 PIVCs). The c-statistic (95% confidence interval) of the models in the validation cohort for dis-

*	 Correspondence to: Hideto Yasuda, Saitama Medical Center, Jichi Ika University, Saitama, Japan. E-mail: yasudahideto@me.com

DOI: 10.2478/jccm-2024-0028



The Journal of Critical Care Medicine 2024;10(3) • 233Available online at: www.jccm.ro

��Introduction

Peripheral intravenous catheters (PIVCs) are the most 
commonly used invasive medical devices in hospital-
ised patients, especially critically ill patients in intensive 
care units (ICUs) [1]. However, PIVCs are associated 
with different types of complications, with phlebitis be-
ing the most common [1-2]. PIVC-associated phlebitis 
is a serious healthcare complication because it not only 
causes patient discomfort but can also result in infections 
or other outcomes, thus resulting in prolonged hospital 
stays and increased expenditure [3-14]. The early iden-
tification and accurate assessment of PIVCs is essential 
to prevent the occurrence of PIVC-associated phlebitis. 
Machine learning techniques have been established as 
a reliable and robust tool to predict outcomes in emer-
gency and critical care settings [15-22]. Implementing 
machine learning (ML)-based predictive modelling in 
ICUs with electronic medical records could improve 
healthcare quality by alerting medical staff of impend-
ing complications in advance, and the timely removal of 
symptomatic PIVCs is important to prevent the occur-
rence of phlebitis [5]. The Infusion Nurses Society and 
National Health Service hospitals in England (epic3) 
do not recommend the routine replacement of PIVCs 
but recommend replacement if clinical findings of sus-
pected infection, such as phlebitis, or other complica-
tions are observed [23,24]. However, given that phlebi-
tis has resulted in a need for skin grafting, progressed 
to necrosis, and increased the risk of death in severe 
cases [11], a predictive model for phlebitis would aid in 
the removal of PIVCs when clinically indicated rather 
than at predesignated time periods. Although several 
studies have investigated the risk factors for the occur-
rence of phlebitis, few models have been developed to 
predict PIVC-associated phlebitis [25]. To bridge this 

knowledge gap, this study utilised the AMOR-VENUS 
database, which is an epidemiological database of PIV-
Cs in critically ill patients [1]. The current study aimed 
to develop several ML-based models by using previ-
ously identified risk factors to predict the occurrence 
of PIVC-associated phlebitis [1,14] and to validate and 
compare the predictive performance of these models.

��Materials and methods
Study design and setting
This study used the AMOR-VENUS database [1], a 
prospective multicentre cohort study in 23 ICUs of 22 
institutions that was conducted in Japan between Janu-
ary 1, 2018, and March 31, 2018. The AMOR-VENUS 
study was conducted to describe the epidemiology of 
PIVC use and the incidence/occurrence of phlebitis 
and related complications in the ICU.

Ethical considerations

Post-hoc analyses using the AMOR-VENUS database 
were approved by the AMOR-VENUS ethics review 
board. Therefore, the requirement for a new ethics 
review for this study was waived. The study was con-
ducted in accordance with the Declaration of Helsinki 
and Transparent Reporting of Multivariable Prediction 
Model for Individual Prognosis or Diagnosis Statement 
[26]. The need for informed consent was waived, and 
an opt-out recruitment method was employed.

Study participants and included PIVCs

This study included data from the AMOR-VENUS da-
tabase on all consecutive newly inserted PIVCs in pa-
tients ≥ 18 years during their ICU stay. The inclusion 
and exclusion criteria can be found in a previously pub-
lished article on the AMOR-VENUS study [1]. These 

crimination were as follows: RSF, 0.689 (0.627–0.750); LASSO, 0.664 (0.610–0.717); RF, 0.699 (0.645–0.753); gradient 
boosting tree, 0.699 (0.647–0.750); COX, 0.516 (0.454–0.578); and LR, 0.633 (0.575–0.691). No significant difference 
was observed among the c-statistic of the four models for binary outcome. However, RSF had a higher c-statistic than 
COX. The important predictive factors in RSF included inserted site, catheter material, age, and nicardipine, whereas 
those in RF included catheter dwell duration, nicardipine, and age.

Conclusions: The RSF model for the survival time analysis of phlebitis occurrence showed relatively high prediction 
performance compared with the COX model. No significant differences in prediction performance were observed 
among the models with phlebitis occurrence as the binary outcome.
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PIVCs were randomly divided into a development co-
hort and a validation cohort in a 7:3 ratio to improve 
the prediction accuracy of the development cohort. 
The following selections were left to the discretion of 
the physicians at each study institution: catheter type 
(material and catheter gauge), medical staff for PIVC 
insertion, insertion method (insertion site, antiseptic 
solution, use of ultrasound, and glove type), manage-
ment method (type of dressing and timing of changing 
the dressing), and removal timing.

Data collection

The following variables were retrieved from the AMOR-
VENUS study database: ICU characteristics (provision 
of standard ICU drug administration procedures, edu-
cation of nurses handling the intravenous [IV] catheter 
management); patient characteristics (age, sex, height, 
weight, acute physiological and chronic health evalu-
ation [APACHE] II score [27], Charlson comorbidity 
index [28], ICU admission route, mode of admission, 
admission category, and admission with presence of 
sepsis [29]); characteristics of PIVC (medical staff in-
serting the catheter, insertion site, catheter material, 
catheter gauge, dressing method, infection during cath-
eter indwell, and duration of catheter indwell); drugs 
administered via PIVC (drug concentration, adminis-
tration rate and duration of administration); and phle-
bitis-related outcomes. Details on the data collected in 
the original article can be found in Appendix File A.

Outcomes

The occurrence of phlebitis was considered the pri-
mary endpoint, which was defined using the phlebitis 
scale developed by the Infusion Nurses Society [30]. 
Detailed information regarding the definition of phle-
bitis and assessment methods has been reported in the 
AMOR-VENUS study [1].

Predictors of outcome

Forty potential variables from four variable levels were 
included in the prediction models and were selected on 
the basis of a priori knowledge [3-14] and clinical per-
spectives. These included ICU characteristics (educa-
tion of nurses regarding venous catheter management 
and standardised drug administration measures in the 
ICU); patient-level variables (age, sex, body mass in-
dex, APACHE II score, and presence of infections dur-
ing catheter dwelling); catheter-level variables (desig-
nation of medical staff inserting the catheter, number 

of insertion attempts, use of ultrasonography, catheter 
insertion site, catheter gauge, type of dressing, and 
catheter material); and drug-level variables (fentanyl, 
heparin, propofol, nicardipine, dexmedetomidine, am-
picillin/sulbactam, albumin, paracetamol, potassium, 
meropenem, steroid, ceftriaxone, vancomycin, mag-
nesium, peripheral parenteral nutrition, phosphorus, 
noradrenaline, carperitide, midazolam, nitroglycerin, 
dobutamine, cefmetazole, amiodarone, cefepime, lev-
etiracetam, and landiolol). The types of drugs included 
in the prediction model were limited to those admin-
istered via more than 1% of all PIVCs and were asso-
ciated with a phlebitis incidence of more than 5% on 
the basis of clinical considerations. The standardised 
drug administration measures in the ICU in the cur-
rent study were defined in accordance with the docu-
mented standard operating procedures for drug ad-
ministration, which was supervised by a pharmacist at 
the institution, and included the drug’s composition, 
choice of route of administration, administration rate, 
and contraindications to compounding.

Data processing

Spline curves were drawn to evaluate whether the con-
tinuous variables (age, body mass index, and APACHE 
II) had a linear effect on the occurrence of phlebitis. If 
the effect was not linear, cutoff values were set in ac-
cordance with the spline curves and were treated as 
categorical variables. Drugs were included in the pre-
diction model as binary data. Catheter gauges were cat-
egorised into 14–16, 18, 20, and 22–24 gauges. Dressing 
was divided into sterile or non-sterile. Other factors as 
registered in the database were included in the predic-
tion model. Continuous variables were standardised, 
and categorical variables were transformed into dum-
my variables.

Handling of missing data 

Variables with >30% of missing data were excluded. 
For continuous variables, outliers and apparently in-
consistent values were treated as missing. However, 
none of the included variables had a missing percent-
age > 30%, outliers, and apparently inconsistent value. 
Multiple imputation was performed using the “mice” 
package to impute missing values (m = 25, maxit = 50, 
method = ‘pmm’, seed = 500) [31]. Missing measures 
were imputed using all predictors, outcomes, and other 
covariates. Details on the missing imputation method 
have been provided in Appendix File A.

https://jccm.ro/wp-content/uploads/2024/06/supplem_material_Yasuda.pdf
https://jccm.ro/wp-content/uploads/2024/06/supplem_material_Yasuda.pdf
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Sample size calculation

According to the criteria of Riley et al. [32], a total of 
1429 participants (PIVCs) were needed in both the 
development and validation cohorts to determine a 
shrinkage of <10%, estimated prevalence of 7.5% for 
PIVC-related phlebitis [1], and expected R-squared 
value of 0.2 by using 40 potential predictive parameters.

Statistical analysis

Patient characteristics and predictors
Patient characteristics, catheter characteristics, and 
candidate predictors for each cohort were described as 
mean and standard deviation (SD) or median and in-
terquartile range (IQR) for continuous variables and as 
numbers and percentages for categorical variables.

Machine learning models
The included PIVCs were randomly divided into a de-
velopment cohort and a validation cohort in a 7:3 ratio. 
This ratio was chosen based on a similar study that used 
machine learning for predictive modeling in the emer-
gency department setting [33], which also employed a 
7:3 split. The development cohort was used to train and 
optimize the machine learning models, while the vali-
dation cohort was used to assess the performance of the 
developed models on unseen data. Given that the time 
to occurrence of phlebitis is an important outcome for 
PIVC-related phlebitis, we used the random survival 
forest (RSF), which can create predictive models for 
time-to-event outcomes, for the development cohort 
and devised a predictive model [34]. Moreover, consid-
ering that the occurrence of phlebitis is also an impor-
tant outcome, the (1) logistic regression (LR) with least 
absolute reduction and selection operator (LASSO), (2) 
random forest (RF), and (3) gradient boosting decision 
tree were chosen to develop predictive models that treat 
outcome as a binary variable [15-22]. RSF models were 
built using the R package randomForestSRC, and the 
variable importance was obtained [35]. To understand 
the contribution of the predictors to the model, a scaled 
variable importance of 100 was shown as the maximum 
value [36, 37]. LASSO was performed to select the opti-
mal value of penalty parameter (lambda, λ). Validation 
was performed using 10-fold cross-validation, and beta 
coefficients for the selected variables were calculated. 
For the development of RF and gradient-boosted tree 
models, we performed hyperparameter optimisation 
with a grid search strategy by using the “ranger” and 
“caret” packages [36, 38]. For the gradient-boosted tree 

model, we used 10-fold cross-validation to measure 
the prediction error with a smaller variance than the 
prediction error from a single train-test split. Similarly, 
the RSF and RF models measured prediction error by 
using out-of-bag (samples left behind after bagging) 
estimation.

Comparator models
To compare the predictive performance, we chose the 
Cox proportional hazards (COX) and LR models as 
comparators for time-to-event and binary outcomes, 
respectively. Backward stepwise selection methods 
were used to determine the optimal factors for COX 
and LR models. To ensure consistency and comparabil-
ity in the analysis, the risk factors for phlebitis used in 
these models were the same as those used in the above-
mentioned four ML models. Details on the comparator 
models have been provided in Appendix File A.

Assessment of model performance
To assess the predictive performance, the developed 
models, including the COX and LR comparator models, 
were applied to the validation cohort. Receiver oper-
ating characteristic (ROC) curves were drawn, and c-
statistics (also called area under the curve [AUC]) with 
95% confidence interval (CI) were calculated as the 
discriminant index. In addition, the c-statistics of the 
models were compared using the Delong test for each 
outcome type [39]. To show the relationship between 
the predicted and observed probabilities of phlebitis oc-
currence in the validation cohort, we plotted the cali-
bration curves for the models by using locally weighted 
scatterplot smoothing curves[40]. All statistical analy-
ses were performed using R software (The R Founda-
tion for Statistical Computing, version 4.0.3) [41]. 

��Results
Patients, catheters, and drug characteristics

Among the 7118 PIVCs enrolled in the AMOR-VE-
NUS study, 3689 PIVCs inserted outside the ICU 
were excluded, thus resulting in a final cohort of 3429 
PIVCs (Figure 1). PIVCs were randomly divided into 
a development cohort (2400 PIVCs) and a validation 
cohort (1029 PIVCs). Patient and catheter characteris-
tics are shown in Tables 1 and 2, respectively. The me-
dian (IQR) catheter dwell time and incidence of phle-
bitis occurrence in the development cohort were 44.7 
(20.7–79.1) h and 208/2400 (8.7%), respectively, and 
those in the validation cohort were 41.5 (21.0–76.5) h 

https://jccm.ro/wp-content/uploads/2024/06/supplem_material_Yasuda.pdf


 236 • The Journal of Critical Care Medicine 2024;10(3) Available online at: www.jccm.ro

Table 1. Patient characteristics of the development and validation cohorts at ICU admission 
Variables Development cohort (N = 2,400) Validation cohort (N = 1,029)
Age, mean (SD), years 68.1 (15.2) 67.9 (15.0)
Sex, male (n, %) 1485 (61.9) 637 (61.9)
Body height, mean (SD), cm 161 (9.6) 161 (9.6)
Body weight, mean (SD), kg 59.9 (15.4) 60.1 (14.9)
BMI, mean (SD) 23.0 (4.7) 23.1 (4.5)
APACHE II, mean (SD) 19.2 (8.3) 19.2 (8.2)
SAPS II, mean (SD) 44.0 (19.5) 44.3 (19.0)
SOFA, mean (SD) 6.8 (3.7) 6.7 (3.7)
Charlson comorbidity index, mean (SD) 4.2 (2.6) 4.2 (2.6)
ICU admission from (n, %)
Operation room 921 (38.4) 427 (41.5)
Emergency room 965 (40.2) 404 (39.3)
General ward 363 (15.1) 142 (13.8)
Outpatients 18 (0.8) 2 (0.2)
Transfer from other hospital 133 (5.5) 54 (5.3)
Type of admission to the ICU (n, %)
Elective surgical 478 (19.9) 214 (20.8)
Emergency surgical 443 (18.5) 213 (20.7)
Medical 1479 (61.6) 602 (58.5)
ICU admission category (n, %)
Cardiology 860 (35.8) 341 (33.1)
Pulmonary 350 (14.6) 160 (15.6)
Gastrointestinal 243 (10.1) 100 (9.7)
Neurology 455 (19.0) 212 (20.6)
Trauma 95 (4.0) 41 (4.0)
Urology 21 (0.9) 10 (1.0)
Gynaecology 16 (0.7) 8 (0.8)
Skin/tissue 33 (1.4) 17 (1.7)
Others 327 (13.6) 140 (13.6)
Sepsis at ICU admission (n, %) 495 (20.6) 209 (20.3)
Mechanical ventilation within 24 hours after admission to 
ICU (n, %) 1433 (59.7) 631 (61.3)

APACHE, acute physiology and chronic health evaluation; BMI, body mass index; ICU, intensive care unit; SAPS, simplified acute physiology score; SD, standard deviation; SOFA, sequential organ failure 
assessment

Fig. 1. Patient PIVC flowchart (ICU, intensive care unit; PIVC, peripheral intravenous catheter)
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Table 2. PIVC characteristics during the insertion of the development and validation cohorts
Variables Development cohort (N = 2,400) Validation cohort (N = 1,029)
Catheter inserted by (n,%)
Doctor 203/1,879 (10.8) 81/801 (10.1)
Nurse 1,673/1,879 (89.0) 720/801 (89.9)
Inserted Site (n, %)
Upper arm 245/2,378 (10.3) 111/1,021 (10.9)
Forearm 1,303/2,378 (54.8) 546/1,021 (53.5)
Elbow 113/2,378 4.8) 50/1,021 (4.9)
Wrist 118/2,378 5.0) 44/1,021 (4.3)
Hand 341/2,378 (14.3) 166/1,021 (16.3)
Lower leg 152/2,378 (6.4) 73/1,021 (7.1)
Dorsal foot 106/2,378 (4.5) 31/1,021 (3.0)
Catheter material 
  PEU-Vialon* 777/2,400 (32.4) 310/1,029 (30.1)
Polyurethane 658/2,400 (27.4) 320/1,029 (31.1)
  Polyethylene 0/2,400 (0) 0/1,029 (0)
  Tetrafluoroethylene 910/2,400 (37.9) 382/1,029 (37.1)
  Others 55/2,400 (2.3) 17/1,029 (1.7)
Catheter gauge (n,%)
14G 1/2,357 (0.04%) 0/1,011 (0)
16G 51/2,357 (2.2) 22/1,011 (2.2)
18G 56/2,357 (2.4) 33/1,011 (3.3)
20G 612/2,357 (26.0) 276/1,011 (27.3)
22G 1,592/2,357 (67.5) 662/1,011 (65.5)
24G 45/2,357 (1.9) 17/1,011 (1.7)
Antiseptic solution before catheterisation (n,%)
None 5/1,863 (0.3) 3/802 (0.4)
Alcohol 1,817/1,863 (97.5) 782/802 (97.5)
0.2% chlorhexidine alcohol 14/1,863 (0.8) 7/802 (0.9)
0.5% chlorhexidine alcohol 10/1,863 (0.5) 5/802 (0.6)
1.0% chlorhexidine alcohol 12/1,863 (0.6) 5/802 (0.6)
10% povidone iodine 2/1,863 (0.1) 0/802 (0)
other 3/1,863 (0.2) 0/802 (0)
Use of ultrasonography (n,%) 36/1,844 (1.9) 22/792 (2.8)
Number of trials for insertion (n,%)
1 1,501/1,834 (81.8) 618/785 (79.7)
2 221/1,834 (12.1) 92/785 (11.7)
≥3 112/1,834 (6.1) 75/785 (9.6)
Difficulties with the insertions (n, %)
Easy 882/1,811 (48.7) 350/783 (44.7)
Slightly easy 535/1,811 (29.5) 237/783 (30.3)
Slightly difficult 306/1,811 (16.9) 150/783 (19.2)
Difficult 88/1,811 (4.9) 46/783 (5.9)
Glove (n,%)
Sterile 14/1,836 (0.8) 5/794 (0.6)
Non-sterile 1,738/1,836 (94.7) 758/794 (95.5)
Nothing 84/1,836 (4.6) 31/794 (3.9)
Dressing (n,%)
Chlorhexidine-impregnated dressing chrolehexidne 0/2,377 (0) 0/1,019 (0)
Sterile polyurethane dressing 2,338/2,377 (98.4) 989/1,019 (97.1)
Non-sterile polyurethane dressing polyuretane 35/2,377 (1.5) 25/1,019 (2.5)
Gauze dressing 0/2,377 (0) 1/1,019 (0.1)
Tape dressing 4/2,377 (0.2) 4/1,019 (0.4)
Any infection during catheter dwell (n, %)** 550/2,400 (22.9) 253/1,029 (24.6)
Duration of catheter dwell, median (IQR), hour 44.7 (20.7-79.1) 41.5 (21.0-76.5)
Phlebitis (n,%) 208/2,400 (8.7) 105/1,029 (10.2)

ICU, intensive care unit; IQR, interquartile range; PIVC, peripheral intravenous catheter; *PEU-Vialon: polyetherurethane without leachable additives; ** Any type of infection that the patient had during 
the period when the target PIVC was inserted
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and 105/1029 (10.2%), respectively. The characteristics 
of drugs administered via PIVC that were included in 
the ML models are shown in Table A.1 in Appendix 
File A. Patient, catheter, and drug characteristics for 
the development and validation cohorts by phlebitis 
occurrence are shown in Tables A.2, A.3, and A.4 in 
Appendix File A, respectively. Missing values in the 
patients and PIVCs are shown in Table A.5 and Table 
A.6 in Appendix File A. No missing values were found 
in the context of drugs administered via the PIVCs.

Predictor selection, model development, and inter-
nal validation

The ML prediction models included 40 predictors (59 
parameters) for RSF and 41 predictors (60 parameters) 
for LASSO, RF, and gradient boosting (Table A.7 in Ap-
pendix File A). Spline curves of age and body mass in-
dex for the occurrence of phlebitis are shown in Figure 
A.1 in Appendix File A. Age showed a linear associa-
tion with phlebitis, but body mass index and APACHE 
II were not considered to be a linear effect on the oc-
currence of phlebitis. Therefore, the spline curves were 
used as a comparator to set the cutoff values of body 
mass index (≤15, 16-22, 23-29, and 30≤), and APACHE 
II (≤15, 16-25, and 26≤). The importance of predictors 
in the RSF, RF, and gradient boosting tree models are 
shown in Figure 2 and Figure A.2 in Appendix File A. 
A total of 38 predictors (58 parameters), 40 predictors 
(53 parameters), and 33 predictors (43 parameters) 
were included in the RSF, RF, and gradient boosting 
tree models after excluding predictors with zero impor-
tance, respectively. In the final LASSO model with op-
timal λ to minimise the mean squared error, 29 predic-
tors (44 parameters) were selected, the beta coefficient 
values of which are shown in Figure A.2 in Appendix 
File A. Factor selection using the backward method for 
COX and LR models as comparators resulted in the 
selection of 17 predictors (26 parameters) and 19 pre-
dictors (26 parameters), respectively. Hazard and odds 
ratios and 95% CIs for each model are shown in Figure 
A.2 in Appendix File A. The other hyperparameters of 
ML models are described in Table 8 in Appendix File 
A. Changes in the number of trees and out-of-bag es-
timation of RF are shown in Figure A.3 in Appendix 
File A. The internal validation of different models, as 
represented by ROC curves and c-statistics, are shown 
in Figure 3. The c-statistic (95% CI) of the compara-
tor models were 0.581 (0.542–0.621) in the COX model 
and 0.725 (0.688–0.762) in LR model (Table 3). The c-

statistic (95% CI) and the results of the Delong test in 
the development set were 0.645 (0.606–0.688), 0.699 
(0.662–0.736), 0.980 (0.973–0.986), and 0.892 (0.870–
0.914) in the RSF, LASSO, RF, and gradient boosting 
tree models, respectively (Table 3 and Table A.9 in Ap-
pendix File A).

Model performance in validation cohort

The c-statistics (95% CI) of the models in validation 
cohort for discrimination were as follows: RSF, 0.689 
(0.627–0.750); LASSO, 0.664 (0.610–0.717); RF, 0.699 
(0.645–0.753); gradient boosting tree, 0.699 (0.647–
0.750); COX, 0.516 (0.454–0.578); and LR, 0.633 
(0.575–0.691) (Table 4). The results of the Delong test 
are shown in Table A.10 in Appendix File A. The plot-
ted ROCs are depicted in Figure 4. No significant dif-
ference was observed among the c-statistic (95% CI) of 
the three models in terms of binary outcome (LASSO, 
RF, and gradient boosting). For the visual assessment 
of calibration plot in the validation cohort (Figure A.4 
in Appendix File A), all four ML models were well cali-
brated to the observed overall range of predicted phle-
bitis in the low range of the predicted outcome. The 
Brier scores of the models for binary outcomes and the 
RSF model for time-to-event outcome were 0.089 and 
0.113, respectively (Table A.11 in Appendix File A). 
Other indicators of model performance in the predic-
tive model that treated outcomes as binary variables are 
shown in Table A.12 in Appendix File A.

��Discussion
The RSF model for the survival time analysis of phle-
bitis occurrence showed relatively high prediction 
performance compared with the COX model. How-
ever, no significant differences in prediction per-
formance were observed among the models with 
phlebitis occurrence as the binary outcome. Fac-
tors with high predictive importance included in-
serted site, catheter material, age, and nicardipine. 
Predictive models for the occurrence of PIVC-related 
phlebitis in orthopaedic patients have been reported 
[25]. However, to the best of our knowledge, there has 
been no report of predictive models for the occurrence 
of PIVC-related phlebitis in critically ill patients. Risk 
factors for phlebitis may vary depending on the clini-
cal setting [7,11,14]. Therefore, it is inevitable that a 
prediction model of PIVC-related phlebitis occurrence 
should be developed for each group of target patients, 
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such as critically ill patients, orthopaedic patients, and 
paediatric patients. The previous study used sophisti-
cated statistical methods (Bayesian regression model) 
to create a prediction model for PIVC-related phlebitis 
[25], but the target population was limited to orthopae-
dic patients. Unlike patients managed in general wards, 
critically ill patients admitted to the ICU are adminis-
tered several drugs, and it is necessary to consider the 
effect of those drugs in the prediction model. However, 
the previous prediction model for orthopaedic patients 

Table 3. Difference of c-statistics in each model in the 
development cohort

Model C-statistics (95% CI)
Binary outcome models
LASSO 0.699 (0.662–0.736)
Random forest 0.980 (0.973–0.986)
Gradient boosting tree 0.892 (0.870–0.914)
Logistic regression model 0.725 (0.688–0.762)
Survival outcome models
Random survival forest 0.645 (0.606–0.684)
Cox proportional hazards model 0.581 (0.542–0.621)

CI: Confidence interval

Fig. 2. Importance of predictors in the random survival forest model. The variable importance was measured and scaled 
to have a maximum value of 100.
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Fig. 4. Receiver operating characteristic (ROC) curves of each model in the validation set. (a) The c-statics (95% CI) of 
the models for time-to-event outcomes: random survival forest, 0.655 (0.603–0.708); Cox Proportional Hazard Model, 
0.516 (0.454–0.578). The black and green lines represent the random survival forest and Cox proportional hazards 
models, respectively. (b) The c-statics (95% CI) of the models for binary outcomes: LASSO, 0.680 (0.625–0.735); random 
forest, 0.677 (0.622–0.731); gradient boosting tree, 0.646 (0.587–0.706); and logistic regression, 0.633 (0.575–0.691). 
The black, red, green, and blue lines represent LASSO, random forest, gradient boosting tree, and logistic regression, 
respectively. CI: Confidence interval

Fig. 3. Receiver operating characteristic (ROC) curves of each model in the development set. (a) The c-statics (95% CI) 
of the models for time-to-event outcomes; random survival forest: 0.645 (0.606–0.684), and Cox proportional hazards 
model: 0.581 (0.542–0.621). The black and green lines represent the random survival forest and Cox proportional 
hazards models, respectively. (b) The c-statics (95% CI) of the models for binary outcomes: LASSO, 0.699 (0.662–0.736); 
random forest, 0.980 (0.973–0.986); gradient boosting tree, 0.892 (0.870–0.914); and logistic regression, 0.725 (0.688–
0.762). The black, red, green, and blue lines represent LASSO, random forest, gradient boosting tree, and logistic regres-
sion, respectively.  CI: Confidence interval
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did not include enough drugs as risk factors, thereby 
making it difficult to apply the model to predict the oc-
currence of phlebitis in critically ill patients. In addition 
to the LR model that treated the outcome of phlebitis 
as a binary variable, this study also examined a predic-
tive model for time-to-event outcome that considers 
the time until the occurrence of phlebitis. The notion 
of time is very important in the outcome of phlebitis, 
and the outcome of peripheral venous catheter compli-
cations, such as phlebitis, should be examined in terms 
of time-to-event outcomes [7,8,14]. To date, there have 
been no reports of studies using time-to-event out-
comes in the development of predictive models for in-
travascular catheter-related complications. Therefore, 
our model for predicting the occurrence of phlebitis in 
critically ill patients can be considered novel.

Owing to a lack of predictive models for phlebitis in 
critically ill patients, it was unclear what type of model 
building method should be used to create predictive 
models. Bayesian regression model was used to con-
struct a prediction model for PIVC-related phlebitis in 
orthopaedic patients, as mentioned above [25]. Several 
prediction models have also been reported to predict 
thrombotic complications in peripherally inserted cen-
tral venous catheter (PICC) [42-46] and central venous 
catheter (CVC) [45, 47-49]. Moreover, LR models have 
also been used in most of the abovementioned studies 
to create prediction models. Regression models assume 
linearity between risk factors and outcomes. However, 
given that the relationship between phlebitis and risk 
factors is not necessarily based on linearity, creating 
predictive models using LR models or COX models 
may not be sufficient as methods for the prediction of 
occurrence of PIVC-related phlebitis. Considering that 
ML enables the construction of predictive models that 
do not assume linearity between exposure variables 

and outcomes, it has been widely used in recent years, 
and the fields of emergency medicine and intensive 
care are no exception [15-22]. The ML models mainly 
used in the articles reported to date are LASSO, RF, and 
gradient boosting decision tree [15-22,23]. In the cur-
rent study, we used these three models for binary out-
comes along with the RSF for time-to-event outcomes 
to construct prediction models [15-22, 34]. Given that 
each model has its own characteristics, it is important 
to compare which method of model building is better. 
The predictive performance of the previously reported 
models for complications of intravascular catheters 
was 0.716 for phlebitis in PIVC, 0.65–0.82 for ve-
nous thromboembolism in PICC [42, 44-45, 48], and 
0.69–0.80 for catheter-related blood stream infection 
in CVC [43, 46, 49]. On the other hand, in the current 
study, the predictive performances with the c-statistic 
of the model for PIVC-related phlebitis in critically ill 
patients were 0.68 (95% CI 0.62–0.73) for RF and 0.66 
(95% CI 0.60–0.71) for RSF. It is difficult to compare 
the results of this study with those of previous studies 
because of the differences in the patient backgrounds. 
The prediction performance of a clinical prediction 
model is considered moderate if it exceeds 0.7 [50]. 
The prediction performance of the model developed in 
this study was poor because of several factors that con-
tributed to the development of PIVC-related complica-
tions, thus making it difficult to accurately predict the 
occurrence of PIVC-related outcomes. Although the 
number of factors used to predict outcomes is large due 
to the various types of drug administered in critically ill 
patients, there are roughly 10 non-drug predictors, and 
these machine learning predictive models are likely to 
be easy to use clinically. However, factors that influence 
PIVC-related complications can often be easily modi-
fied, such as PIVC insertion site and catheter gauge. 
Therefore, even if the predictive performance is not 
very high, the predictive model itself may be clinically 
useful because interventions can be easily implement-
ed. Additionally, although the number of factors used 
to predict outcomes is large due to the various types of 
drugs administered in critically ill patients, there are 
roughly 10 non-drug predictors, and these machine 
learning predictive models are likely to be easy to use 
clinically. The benefits of creating a predictive model 
for development of PIVC-related phlebitis using ML 
includes the ability to identify high-risk patients and 
optimization of preventative strategies for such pa-
tients. Additionally, the model can be used to monitor 
the effectiveness of interventions and for the evaluation 

Table 4. Difference of c-statistics in each model in the 
validation cohort

Model C-statistics (95%CI)
Binary outcome models
LASSO 0.680 (0.625–0.735)

Random forest 0.677 (0.622–0.731)

Gradient boosting tree 0.646 (0.587–0.706)

Logistic regression model 0.633 (0.575–0.691)
Survival outcome models
Random survival forest 0.655 (0.603–0.708)

Cox proportional hazards model 0.516 (0.454–0.578)
CI: Confidence interval
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of safety and efficacy of new treatments. This can ul-
timately lead to better patient outcomes and reduced 
healthcare costs. Therefore, the predictive model itself 
may be clinically useful even if the predictive perfor-
mance of the created model is not very high. 

The benefits of creating a predictive model for devel-
opment of PIVC-related phlebitis using ML includes the 
ability to identify high-risk patients and optimisation 
of preventative strategies for such patients. Addition-
ally, the model can be used to monitor the effectiveness 
of interventions and for the evaluation of safety and 
efficacy of new treatments. This can ultimately lead to 
better patient outcomes and reduced healthcare costs. 
Furthermore, this study was able to create a predictive 
model for phlebitis development by considering the 
survival time. By evaluating the predictive models for 
occurrence and survival time, it was possible to create a 
predictive model that would be easier to use in clinical 
practice. Although the number of factors used to pre-
dict outcomes is large due to the various types of drug 
administered in critically ill patients, there are roughly 
10 non-drug predictors, and these machine learning 
predictive models are likely to be easy to use clinically.

This study had a few limitations. First, the predictive 
performance of the model for phlebitis was approxi-
mately 0.7 on the AUC scale, which was not indicative 
of a high predictive performance. However, various fac-
tors affect the occurrence of IV catheter-related com-
plications, not just phlebitis, and it may be difficult to 
achieve the same high prediction performance as other 
prediction models [21-22]. Although we incorporated 
all the previously reported risk factors for phlebitis into 
our model [3-14], there may still be unknown risk fac-
tors. Second, the predictive models were not validated 
externally. Although validation cohort were created 
within the same cohort by using the cross-validation 
method, it may not have been sufficient. External vali-
dation in a different cohort is needed to assess the gen-
eralizability and validity of the predictive models de-
veloped in this study, particularly for the random forest 
model which may be prone to overfitting based on 
the high c-statistic in the development cohort. Third, 
among the several factors incorporated into the predic-
tive model in this study, the drug factor may have been 
inadequately handled. Medications are known to have 
a significant effect on the occurrence of PIVC-related 
phlebitis, and critically ill patients receive a variety of 
medications. The influence of medications on PIVC-
related phlebitis may not only depend on their admin-

istration or absence but also on factors such as dosage, 
duration of administration, and initiation and termi-
nation times. In the prediction model created in this 
study, we only considered the presence or absence of 
medication administration and did not account for the 
potential effect of medications as time-dependent fac-
tors. Considering that critically ill patients are likely to 
receive a greater variety of medications, incorporating 
the influence of medications as time-dependent fac-
tors into the prediction model could potentially lead to 
improved predictive performance. Finally, some of the 
factors incorporated into the predictive model in this 
study, particularly those related to catheters, had high 
missing rates. Although multiple imputation method 
was used, it was not sufficient, and the predictive model 
may not have accurately predicted the outcomes.

��Conclusion
The RSF model for the survival time analysis of phle-
bitis occurrence showed relatively high prediction per-
formance compared with the COX model. However, no 
significant differences in prediction performance were 
observed among the models with phlebitis occurrence 
as the binary outcome. Further investigations are re-
quired to develop models that accurately predict PIVC-
related phlebitis in critically ill patients.

��Acknowledgements
This work was supported by the Grants-in-Aid for Sci-
entific Research of the Japan Society for the Promotion 
of Science (grant no. 17K15870).

��Authors contribution
HY: Conceptualisation, Methodology, Software, For-
mal analysis, Investigation, Data Curation, Writing - 
Original Draft, Visualisation, Project administration, 
Funding acquisition. CMR: Conceptualisation, Meth-
odology, Writing - Review & Editing, Supervision. NM: 
Conceptualisation, Methodology, Writing - Review & 
Editing, Supervision. JAS: Conceptualisation, Method-
ology, Writing - Review & Editing. OM: Conceptualisa-
tion, Methodology, Writing - Review & Editing, Super-
vision. BD: Conceptualisation, Methodology, Writing 
- Review & Editing. MKa: Conceptualisation, Method-
ology, Writing - Review & Editing. KT: Investigation, 
Resources, Writing - Review & Editing. TM: Method-



The Journal of Critical Care Medicine 2024;10(3) • 243Available online at: www.jccm.ro

ology, Writing - Review & Editing, Supervision. YKo: 
Methodology, Investigation, Resources, Writing - Re-
view & Editing. YKi: Conceptualisation, Methodology, 
Investigation, Resources, Writing - Review & Editing. 
NK: Methodology, Investigation, Resources, Writing - 
Review & Editing. KS: Investigation, Resources, Writ-
ing - Review & Editing. NS: Conceptualisation, Meth-
odology, Writing - Review & Editing, Supervision. KM: 
Conceptualisation, Methodology, Writing - Review & 
Editing, Supervision. TA: Methodology, Software, For-
mal analysis, Writing - Review & Editing, Supervision. 

��Conflict of interest
CMR: Griffith University and The University of 
Queensland received on her behalf investigator-initiat-
ed research or educational grants from 3M, BD, Car-
dinal Health, and Eloquest and consultancy payments 
from 3M, BD, and ITL Biomedical (unrelated to the 
current project).
NM: Griffith University and the University of Queens-
land have received on her behalf speaker fees from 3M 
and investigator-initiated research grants from 3M, 
BD, Eloquest, and Cardinal Health (unrelated to the 
current project).
OM and BD: They received investigator-initiated re-
search or educational grants from 3M, BD, and Cooper 
and consultancy payments from 3M, BD, and Cooper 
(unrelated to the current project).

��References
1.	 Yasuda H, Yamamoto R, Hayashi Y, et al. Occurrence and 

incidence rate of peripheral intravascular catheter-related 
phlebitis and complications in critically ill patients: a 
prospective cohort study (AMOR-VENUS study). J Intensive 
Care. 2021;9:3. 

2.	 Marsh N, Webster J, Ullman AJ, et al. Peripheral intravenous 
catheter non-infectious complications in adults: A systematic 
review and meta-analysis. J Adv Nurs 2020;76:3346-62. 

3.	 Kleidon TM, Keogh S, Flynn J, Schults J, Mihala G, Rickard CM. 
Flushing of peripheral intravenous catheters: A pilot, factorial, 
randomised controlled trial of high versus low frequency and 
volume in paediatrics. J Paediatr Child Health. 2020;56:22–9. 

4.	 Rickard CM, Marsh N, Webster J, et al. Dressings and 
securements for the prevention of peripheral intravenous 
catheter failure in adults (SAVE): a pragmatic, randomised 
controlled, superiority trial. Lancet. 2018;392:419-30.

5.	 Rickard CM, Webster J, Wallis MC, et al. Routine versus 
clinically indicated replacement of peripheral intravenous 
catheters: a randomised controlled equivalence trial. Lancet. 

2012;380:1066-74. 

6.	 Günther SC, Schwebel C, Hamidfar-Roy R, et al. Complications 
of intravascular catheters in ICU: definitions, incidence and 
severity. A randomized controlled trial comparing usual 
transparent dressings versus new-generation dressings (the 
ADVANCED study). Intensive Care Med. 2016;42:1753-65. 

7.	 Larsen EN, Marsh N, O’Brien C, Monteagle E, Friese C, Rickard 
CM. Inherent and modifiable risk factors for peripheral venous 
catheter failure during cancer treatment: a prospective cohort 
study. Support Care Cancer. 2021;29:1487-96. 

8.	 Marsh N, Webster J, Larson E, Cooke M, Mihala G, Rickard 
CM. Observational study of peripheral intravenous catheter 
outcomes in adult hospitalized patients: A multivariable 
analysis of peripheral intravenous catheter failure. J Hosp 
Med. 2018;13:83–9. 

9.	 Wallis MC, McGrail M, Webster J, et al. Risk factors for 
peripheral intravenous catheter failure: a multivariate analysis 
of data from a randomized controlled trial. Infect Control Hosp 
Epidemiol. 2014;35:63-8. 

10.	 Abolfotouh MA, Salam M, Bani-Mustafa A, White D, Balkhy HH. 
Prospective study of incidence and predictors of peripheral 
intravenous catheter-induced complications. Ther Clin Risk 
Manag. 2014;10:993-1001. 

11.	 Helm RE, Klausner JD, Klemperer JD, Flint LM, Huang E. 
Accepted but unacceptable: peripheral IV catheter failure. J 
Infus Nurs. 2019;42:151-64. 

12.	 Carr PJ, Rippey JCR, Cooke ML, et al. Derivation of a clinical 
decision-making aid to improve the insertion of clinically 
indicated peripheral intravenous catheters and promote 
vessel health preservation. An observational study. PLOS ONE. 
2019;14:e0213923. 

13.	 Ricard JD, Salomon L, Boyer A, et al. Central or peripheral 
catheters for initial venous access of ICU patients: a 
randomized controlled trial. Crit Care Med. 2013;41:2108–15. 

14.	 Yasuda H, Rickard CM, Marsh N, et al. Risk factors for peripheral 
intravascular catheter-related phlebitis in critically ill patients: 
analysis of 3429 catheters from 23 Japanese intensive care 
units. Ann Intensive Care. 2022;12:33. 

15.	 Goto T, Camargo CA Jr, Faridi MK, Freishtat RJ, Hasegawa K. 
Machine learning–based prediction of clinical outcomes for 
children during emergency department triage. JAMA Netw 
Open. 2019;2:e186937.

16.	 Desai RJ, Wang SV, Vaduganathan M, Evers T, Schneeweiss S. 
Comparison of machine learning methods with traditional 
models for use of administrative claims with electronic 
medical records to predict heart failure outcomes. JAMA Netw 
Open. 2020;3:e1918962.

17.	 Liang W, Liang H, Ou L, et al. Development and validation of 
a clinical risk score to predict the occurrence of critical illness 
in hospitalized patients with COVID-19. JAMA Intern Med. 
2020;180:1081-9.

18.	 Delahanty RJ, Alvarez J, Flynn LM, Sherwin RL, Jones SS. 
Development and evaluation of a machine learning model for 
the early identification of patients at risk for sepsis. Ann Emerg 



 244 • The Journal of Critical Care Medicine 2024;10(3) Available online at: www.jccm.ro

Med. 2019;73:334-44.

19.	 Raita Y, Goto T, Faridi MK, Brown DFM, Camargo CA Jr, 
Hasegawa K. Emergency department triage prediction of 
clinical outcomes using machine learning models. Crit Care. 
2019;23:64.

20.	 Rau CS, Wu SC, Chuang JF, et al. Machine learning models of 
survival prediction in trauma patients. J Clin Med. 2019;8:799.

21.	 Okada Y, Matsuyama T, Morita S,  et al. Machine learning-
based prediction models for accidental hypothermia patients. 
J Intensive Care. 2021;9:6. 

22.	 Nishioka N, Kobayashi D, Kiguchi T, et al. Development 
and validation of early prediction for neurological 
outcome at 90 days after return of spontaneous circulation in 
out-of-hospital cardiacarrest. Resuscitation. 2021;168:142-50.

23.	 Gorski LA, Hadaway L, Hagle ME, et al. Infusion Therapy 
Standards of Practice, 8th Edition. J Infus Nurs. 2021;44:S1-
224.

24.	 Loveday HP, Wilson JA, Pratt RJ, et al. epic3: national evidence-
based guidelines for preventing healthcare-associated 
infections in NHS hospitals in England. J Hosp Infect. 
2014;86:S1-70.

25.	 Lee S, Kim K, Kim JS. A Model of Phlebitis Associated with 
Peripheral Intravenous Catheters in Orthopedic Inpatients. Int 
J Environ Res Public Health. 2019;16:3412.

26.	 Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent 
reporting of a multivariable prediction model for individual 
prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 
2015;350:g7594. 

27.	 Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE 
II: a severity of disease classification system. Crit Care Med. 
1985;13:818-29.

28.	 Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method 
of classifying prognostic comorbidity in longitudinal studies: 
development and validation. J Chronic Dis. 1987;40:373-83.

29.	 Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of Clinical 
Criteria for Sepsis: For the Third International Consensus 
Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 
2016;315:762-74.

30.	 Infusion Nurses Society. Infusion Nursing Standards of 
Practice. J Infus Nurs. 2006;29:S1-92.

31.	 van Buuren S. Package ‘mice’. https://cran.r-project.org/web/
packages/mice/mice.pdf. Accessed 12 June 2023.

32.	 Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size 
required for developing a clinical prediction model. BMJ. 
2020;368:m441. 

33.	 Goto T, Camargo CA Jr, Faridi MK, Freishtat RJ, Hasegawa K. 
Machine Learning-Based Prediction of Clinical Outcomes 
for Children During Emergency Department Triage. JAMA 
Network Open. 2019;2:e186937.

34.	 Tang H, Jin Z, Deng J, et al. Development and validation of a 
deep learning model to predict the survival of patients in ICU. 
J Am Med Inform Assoc. 2022;29:1567-76. 

35.	 Ishwaran H. Package ‘randomforestSRC’. https://cran.r-project.
org/web/packages/randomForestSRC/randomForestSRC.pdf. 
Accessed 12 June 2023.

36.	 Kuhn M. Package ‘caret’. https://cran.r-project.org/web/
packages/caret/caret.pdf. Accessed 12 June 2023.

37.	 Chen T. Package ‘xgboost’. https://cran.r-project.org/web/
packages/xgboost/xgboost.pdf. Accessed 12 June 2023.

38.	 Wright MN. Package ‘ranger’. https://cran.r-project.org/web/
packages/ranger/ranger.pdf. Accessed 12 June 2023.

39.	 Robin X. Package ‘pROC’. https://cran.r-project.org/web/
packages/pROC/pROC.pdf. Accessed 12 June 2023.

40.	 Steyerberg EW. Clinical prediction models : a practical 
approach to development, validation, and updating. 2009th 
Edition. New York: Springer; 2009.

41.	 R Core Team. R: A language and environment for statistical 
computing. The R Project for Statistical Computing. https://
www.R-project.org/. Accessed 12 June 2023.

42.	 Chopra V, Kaatz S, Conlon A,  et al. The Michigan Risk Score 
to predict peripherally inserted central catheter-associated 
thrombosis. J Thromb Haemost. 2017;15:1951-62. 

43.	 Govindan S, O’Malley ME, Flanders SA, Chopra V. The MI-
PICC Score: A Risk-Prediction Model for PICC-associated 
Complications in the ICU. Am J Respir Crit Care Med. 
2022;206:1286-89. 

44.	 Song X, Lu H, Chen F,  et al. A longitudinal observational 
retrospective study on risk factors and predictive model 
of PICC associated thrombosis in cancer patients. Sci Rep. 
2020;10:10090.

45.	 Liu B, Xie J, Sun X, et al. Development and Validation of a New 
Clinical Prediction Model of Catheter-Related Thrombosis 
Based on Vascular Ultrasound Diagnosis in Cancer Patients. 
Front Cardiovasc Med. 2020;7:571227.

46.	 Herc E, Patel P, Washer LL, Conlon A, Flanders SA, Chopra 
V. A Model to Predict Central-Line-Associated Bloodstream 
Infection Among Patients With Peripherally Inserted Central 
Catheters: The MPC Score.Infect Control Hosp Epidemiol. 
2017;38:1155-66.

47.	 Perek S, Khatib A, Izhaki N, Khalaila AS, Brenner B, Horowitz 
NA. A prediction model for central venous catheter-related 
thrombosis in patients with newly-diagnosed acute myeloid 
leukemia: A derivation cohort analysis. Eur J Intern Med. 
2022;101:68-75.

48.	 Lin S, Zhu N, YihanZhang, Du L, Zhang S. Development  and 
validation of a prediction model of catheter-
related  thrombosis  in patients with cancer undergoing 
chemotherapy based on ultrasonography results and clinical 
information. J Thromb Thrombolysis. 2022;54:480-91.

49.	 Rahmani K, Garikipati A, Barnes G, et al. Early prediction of 
central line associated bloodstream infection using machine 
learning. Am J Infect Control. 2022;50:440-5.

50.	 Swets JA. Measuring the accuracy of diagnostic systems. 
Science. 1988;240:1285-93.

https://cran.r-project.org/web/packages/mice/mice.pdf
https://cran.r-project.org/web/packages/mice/mice.pdf
https://cran.r-project.org/web/packages/randomForestSRC/randomForestSRC.pdf
https://cran.r-project.org/web/packages/randomForestSRC/randomForestSRC.pdf
https://cran.r-project.org/web/packages/caret/caret.pdf
https://cran.r-project.org/web/packages/caret/caret.pdf
https://cran.r-project.org/web/packages/ranger/ranger.pdf
https://cran.r-project.org/web/packages/ranger/ranger.pdf
https://cran.r-project.org/web/packages/pROC/pROC.pdf
https://cran.r-project.org/web/packages/pROC/pROC.pdf

