
REVIEWThe Journal of Critical Care Medicine 2024;10(4):291-315

Combining O2 High Flow Nasal or  
Non-Invasive Ventilation with Cooperative  
Sedation to Avoid Intubation in Early Diffuse 
Severe Respiratory Distress Syndrome,  
Especially in Immunocompromised or COVID 
Patients?
Fabrice Petitjeans1, Dan Longrois2, Marco Ghignone3, Luc Quintin1*

1	Department	of	Anesthesia-Critical	Care,	Hôpital	d’Instruction	des	Armées	Desgenettes,	Lyon,	France
2	Bichat-Claude	Bernard	and	Louis	Mourier	Hospitals,	Assistance	Publique-Hôpitaux	de	Paris,	Paris	Cité	University,	
Paris,	France

3	Department	of	Anesthesia-Critical	Care,	JF	Kennedy	North	Hospital,	W	Palm	Beach,	Fl,	USA

Abstract
This overview addresses the pathophysiology of the acute respiratory distress syndrome (ARDS; conventional vs. 
COVID), the use of oxygen high flow (HFN) vs. noninvasive ventilation (NIV; conventional vs. helmet) and a multi-
modal approach to avoid endotracheal intubation (“intubation”): low normal temperature, cooperative sedation, 
normalized systemic and microcirculation, anti-inflammation, reduced lung water, upright position, lowered intra-
abdominal pressure.
Increased ventilatory muscle activity (“respiratory drive”) is observed in early ARDS, at variance with ventilatory 
fatigue observed in decompensated chronic obstructive pulmonary disease (COPD). This increased drive leads to im-
pending then overt ventilatory failure. Therefore, muscle relaxation presents little rationale and should be replaced 
by lowering the excessive respiratory drive, increased work of breathing, continued or increased labored breathing, 
self-induced lung injury (SILI), i.e. preserving spontaneous breathing. As CMV is a lifesaver in the setting of failure but 
does not heal the lung, side-effects of intubation, controlled mechanical ventilation (CMV), paralysis and deep seda-
tion are to be avoided. Additionally, critical care resources shortage requires practice changes.
Therefore, NIV should be routine when addressing immune-compromised patients. The SARS-CoV2 pandemics ex-
tended this approach to most patients, which are immune-compromised: elderly, obese, diabetic, etc. The early 
COVID is a pulmonary vascular endothelial inflammatory disease requiring lower positive-end-expiratory pressure 
than the typical pulmonary alveolar epithelial inflammatory diffuse ARDS. This leads one to reassess a) the technique 
of NIV b) the sedation regimen facilitating continuous and extended NIV to avoid intubation. Autonomic, circulatory, 
respiratory, ventilatory physiology is hierarchized under HFN/NIV and cooperative sedation (dexmedetomidine, clo-
nidine). A prospective randomized pilot trial, then a larger trial are required to ascertain our working hypotheses. 

Keywords: ARDS, COVID, self-induced lung injury, spontaneous breathing, oxygen high flow nasal

Received: 22 March 2024 / Accepted: 1 August 2024

Published under CC BY 4.0 license

* Correspondence to: L Quintin, 120 Pagere, 69500 Lyon-Bron, France. E-mail: lucquintinx@gmail.com

 �Abbreviations and glossary
ARDS: acute respiratory distress syndrome

Analgognosia: indifference to pain.

Ataraxia: “imperturbability of mind” (Epicurus) [1]

BP: blood pressure

bpm: breath per minute

C-ARDS: SARS-CoV2 evoked acute respiratory distress syndrome

CCU: critical care unit
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CMV: controlled mandatory ventilation

CO: cardiac output

COPD: chronic obstructive pulmonary disease

Cstat: static compliance: Vt/Plat-PEEP, with an inspiratory pause 
(no flow).

Cdyn: dynamic compliance: Vt/PIP-PEEP, without inspiratory 
pause (with flow); surrogate: Vte/∆PL [2].

CPAP: continuous positive airway pressure

Dependent lung: in standing human, basal, non-aerated lung

DP: driving pressure

∆Pes: esophageal pressure drop

∆PL: tidal change in dynamic transpulmonary pressure

Failure: ventilatory failure

FRC: functional residual capacity

GA: general anesthesia

Generator: respiratory generator located in the lower brain stem 
setting the respiratory rhythm

HFN: O2 high flow nasal

HR: heart rate

Inspiratory effort: quantified by negative changes in esophageal 
pressure

Labored breathing: continued or intensified labored breathing, 
heading to ventilatory failure

Metaboreflex: “originating in skeletal muscle activated when blood 
flow to contracting muscles is insufficient to allow both O2 delivery 
and metabolite washout” [3]

NIV: non-invasive ventilation

Non-dependent lung: in standing human, apical, aerated lung

PEEP: positive end-expiratory pressure

Pendelluft: intrapulmonary gas redistribution from nondependent 
(better aerated) to dependent lung without Vt change

Pes: surrogate of transpulmonary pressure (alveolar pressure mi-

nus pleural pressure)

P/F: PaO2/FiO2

Pplat: pressure measured during brief end-inspiratory hold

PS: pressure support, inspiratory assistance

P-V curve: pressure-volume curve

RASS: Richmond agitation sedation scale

RR: respiratory rate

Respiratory physiology refers to the brain stem respiratory genera-
tor and phrenic activity

ROX index: (SaO2/FiO2)/respiratory rate; sicker patients require 
more oxygen and a higher respiratory rate.

SB: spontaneous breathing, spontaneous ventilation

SILI: patient’s self-induced lung injury

SO2: oxygen saturation

Shunt: perfusion of non-aerated alveoli (low or zero VA/Q [4]); Qs/
Qt=(CcO2 - CvO2)/(CcO2 - CaO2)

Strain: lung deformation [5], tidal volume, tidal volume/end ex-
piratory lung volume [6] 

Stress: transpulmonary pressure [5, 6], driving pressure

Transpulmonary pressure: transmural pressure between the inside 
(alveolus) and outside (pleura-esophagus) of the cavity

Upright position: reverse Trendelenburg, head-up +60°, legs down: 
-45° [7]

VA/Q: ventilation/perfusion ratio

Venous admixture: intrapulmonary shunt+VA/Q mismatch (low 
VA/Q areas) [8]

Ventilatory physiology refers to lung and chest wall mechanics

VHFN: O2 very high flow nasal 

VILI: ventilator-induced lung injury

VO2: oxygen consumption

Vt: tidal volume

WOB: work of breathing

 �Introduction

This article highlights the pathophysiology of classi-
cal vs. COVID-acute respiratory distress syndrome 
(ARDS), and the use of O2 high flow nasal (HFN) and 
very high flow nasal (VHFN>70 L.min-1) and inspira-
tory assistance (pressure support: PS) to avoid endotra-
cheal intubation (“intubation”). This is a follow up of a 
manuscript devoted to early weaning of invasive ven-
tilation [9]. In the setting of COVID-ARDS, ~41% of 
the patients received HFN or non-invasive ventilation 
(NIV) or continuous positive airway pressure (CPAP) 

[10], but only ~20% of the patients receive analgesics 
or sedatives [11]. Indeed, sedation is believed to cause 
respiratory depression and conceal ventilatory failure 
(“failure”) i.e. the clinical sign  to escalate to more inva-
sive therapy. By contrast, alpha-2 agonists (“coopera-
tive sedation”, rousable sedation: dexmedetomidine, 
clonidine, etc.) are now considered as first-line seda-
tives in the critical care unit (CCU) [12-17]: dexme-
detomidine eases NIV [18] and halves the occurrence 
of endotracheal intubation (“intubation”) [19].

CMV is lifesaving [20] when impending or overt 
ventilatory failure is ominous. Nevertheless, CMV 



The Journal of Critical Care Medicine 2024;10(4) • 293Available online at: www.jccm.ro

“(in and of itself) does not produce lung healing” [21]. 
In multiple-organ failure patients under conventional 
sedation, CMV is associated with death ranging from 
16 to 88 % [22-24] (discussion: [25]). Current manage-
ment [26] is associated with circulatory disturbances, 
ventilator-associated pneumonia, excessive sedation, 
delirium, muscle weakness, immuno-paralysis, etc. 
Thus, NIV is the first line tool in the setting of immu-
nodeficiency [27, 28] or upon massive influx of elderly 
patients with baseline chronic inflammation and co-
morbidities. 

Continued or intensified labored breathing (“labored 
breathing”) [29] leads to impending, then overt failure, 
additional lung injury (inflammation; self-induced 
lung injury: SILI [5, 30]; ventilator-induced injury: 
VILI). Thus, delayed intubation and ventilatory assis-
tance may lead to overt failure, gasping, cardiac arrest 
and death [30-34].

A multimodal approach [9, 35-40] (“analytical man-
agement” [37-41]) hierarchizes the pathophysiology of 
the autonomic nervous system, the respiratory genera-
tor [42-44], the vasomotor center [45], the chest wall 
and lung mechanics [6, 8], circulation [46], kidney and 
metabolism. The interval between admission and in-
tubation gives one the opportunity to address labored 
breathing [29], reduce the inspiratory effort (large 
negative esophageal pressure change), normalize the 
work of breathing (WOB), reverse failure, break-up 
SILI [40] and bypasses intubation. Our hypothesis is: 
cooperative sedation extends the tolerance to HFN or 
NIV and buys time for a multimodal approach [35] to 
normalize the respiratory drive. As this multimodal 
approach bears many research questions, they are de-
lineated in the appendix.

 � Pathophysiology
Acute respiratory distress syndrome: pathophysiol-
ogy

Very schematically, early diffuse ARDS entails alveolar 
epithelial dysfunction. By contrast, early COVID-AR-
DS entails pulmonary vascular endothelial dysfunction 
[6, 8, 47, 48].

ARDS is a broad entity characterized by severe 
dyspnea, hyperpnea, tachypnea, hypoxemia, decreased 
lung compliance (“compliance”), alveolar infiltrates 
[49], redefined as PaO2/FiO2=P/F<300/200/100 with 
positive end-expiratory pressure (PEEP)=5 cm H20 
after intubation, bilateral opacities without volume 

overload or cardiac failure [23]. This extends to non-
intubated patients [50]. These criteria are not per-
fect [51]. Using PEEP= 10 cm H2O, FiO2=1 leads to 
underestimate ARDS [52]. FiO2=1 at low PEEP de-
recruits alveoli and lowers P/F (196 to 153) [53]. As 
ARDS entails a spectrum of diseases [54] and several 
clinical presentations (“phenotype”), a CT scan indi-
vidualizes management:

1. Typical ARDS
Typical ARDS [6] comprises two entities [55]: early 
diffuse ARDS entails alveolar epithelial dysfunction, 
unstable alveoli, fluid-filled alveoli (non-cardiogenic 
pulmonary edema), bilateral infiltrates that ultimately 
coalesce into compressive atelectasis. A direct, propor-
tional, relationship exists between the amount of non-
aerated tissue and lowered compliance [6]. Typical 
ARDS is addressed with high PEEP [56], except in the 
setting of “focal “ ARDS [55].

 – “focal” ARDS entails extra-pulmonary ARDS, 
loss of hypoxic vasoconstriction, high compli-
ance and low inflection point on the inspiratory 
pressure-volume (P-V) curve (≤5 cm H2O) [55], 
and is addressed with low PEEP.

 –  “diffuse” ARDS entails pulmonary ARDS, high 
dead space and PaCO2 [57, 58], low compliance 
[59] (a “baby” lung is small but not “stiff” [60]), 
high inflection point (>7 cm H2O), high morta-
lity and is addressed with high PEEP [56]. High 
inflection point is related to low end-expiratory 
volume, low functional residual capacity (FRC) 
[55] and low PaO2.

2. COVID-ARDS
Early COVID-ARDS entails pulmonary vascular en-
dothelial dysfunction [47, 48], pulmonary vascular ab-
normalities [6], loss of hypoxic vasoconstriction with 
hyperperfusion of non-aerated, gasless tissue at vari-
ance with areas of no-perfusion and normal aeration 
[6], micro- and macroemboli [47, 48, 61], well aerated 
lung volume [62], high compliance and low driving 
pressure (DP) [63]. Intrapulmonary shunt (“shunt”) 
is perfusion of non-aerated alveoli (low or zero VA/Q 
[4]). The implication is that a high shunt fraction goes 
to gasless tissue [62]. Micro-emboli prevent recruited 
alveoli to participate in gas exchange. Venous admix-
ture is intrapulmonary shunt+VA/Q mismatch [8]. In 
COVID-ARDS, VA/Q mismatch is more important 
than shunt i.e., predominantly low perfusion of ven-
tilated alveoli. By contrast, in typical ARDS, shunt is 
more important than VA/Q mismatch i.e., adequate 
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perfusion of nonventilated alveoli [8] (COVID-ARDS: 
high VA/Q and dead space; diffuse typical ARDS: low 
VA/Q) [63]). In COVID-ARDS, profound hypoxemia 
[48] occurs when compared to typical ARDS with same 
compliance. Typical ARDS presents with a higher P/F 
for the same compliance [6]). Recruitment is highly 
variable [63]. In the COVID-ARDS setting, low Vt re-
sults in increased dead space, reabsorption atelectasis, 
hypoventilation, hypercarbia, high hypercapnic drive 
and high sedative requirement. Low Vt-high PEEP 
conventionally proposed in typical ARDS appears of 
modest benefit in COVID-ARDS [6, 62].

Hypoxic vasoconstriction is relevant given the vas-
cular disease. In pig lung injury, PS ventilation is as-
sociated with a redistribution of blood flow toward 
non-dependent better aerated lung without inducing 
recruitment. Increased aeration and improved hypoxic 
vasoconstriction occur in dependent regions [64]. Fur-
thermore, alpha-2 agonists improve hypoxic vasocon-
striction [65-67].

The mechanisms observed in early ARDS progress 
toward fibrosis more rapidly in COVID-ARDS com-
pared to typical ARDS. Consequently, starting from 
admission, the intensivist is essentially racing against 
time, contending with ventilatory failure on one front 
and the rapid progression towards fibrosis on the other.

Ventilatory failure: impending vs. overt

Upon admission, the clinical presentation involves 
silent hypoxemia or ventilatory muscle dysfunction 
(“muscle dysfunction”) with labored breathing [10] 
(Figure 1). This dictates the immediate management 
whether it be HFN or helmet NIV, respectively.

Semeiology: If the use of HFN/VHFN/PS does not 
quickly alleviate labored breathing, impending fail-
ure is an indication for intubation+CMV. There is no 
definitive index that mandates intubation, but rather 
continued observation of ongoing or worsening fail-
ure. Clinical signs to look for are discomfort, intoler-
ance to the device, mental deterioration, diaphoresis, 
dyspnea (with hyperpnea being more relevant than 
tachypnea), increased inspiratory effort, phasic acti-
vation of the sternomastoid muscle (palpation of the 
sternomastoid muscle allows for assessment of the 
drive in decompensated chronic obstructive pulmo-
nary disease (COPD) [68] and ARDS [69]), use of ac-
cessory muscles, tracheal tug [69], thoraco-abdominal 
swing, suprasternal notch retraction (an index of large 
negative esophageal pressure swing), intercostal reces-

sion [69], nasal flaring, gasping for air [70], copious 
respiratory secretions [71], airway bleeding, circula-
tory instability, electrocardiographic changes, trends 
in P/F ratio. 

Criteria for intubation are primarily based on the 
clinical evolution. Labored breathing [29], overt fail-
ure [21], continuing hyperpnea (Vt>9.6-12 mL.kg-1 
[72]) or absence of reduction of esophageal change<10 
cm H20 [2] are ominous signs. RR>30-35 min-1, 
SaO2<88% are only contributive. Tachypnea is a re-
sponse to lung inflammation but does not alone justify 
intubation [21]. In the setting of HFN, even minimal 
tachycardia is a sign of failure (intubation: HR=108±19; 
not intubated: 104±19 beats per min [33]).

1. Silent hypoxemia
Hypoxemia results from reduced O2 diffusion (typical 
ARDS) or inadequate alveolar perfusion (COVID-AR-
DS: micro- or macroemboli [48]) and is not necessarily 
accompanied by muscle dysfunction and signs of ven-
tilatory failure, e.g., during “silent hypoxemia” [73-75]. 
Isolated hypoxemia without labored breathing is ad-
dressed with HFN/VHFN. Nevertheless, prolonged si-
lent hypoxemia may lead to clinical deterioration, con-
tinued labored breathing, and eventually intubation.

2. Clinical evolution
The present opinion regarding clinical evolution aligns 
with recent guidelines on the use of HFN/NIV in the 
context of COVID (Table 1 [76]). One notable differ-
ence worth discussing is the emphasis on SaO2>92% 
in the consensus paper [76], while others differentiate 
requirements based on P/F [23, 50]. Some experts [20, 
21] stress the importance of observing the evolution of 
clinical signs, such as hyperpnea rather than tachyp-
nea, over relying on oxygenation parameters. Intuba-
tion decision is not based upon SaO2 or PaO2 values 
[20, 21], or segregation with P/F [23, 50]. The indices 
help in identifying NIV failure within 2 h of treatment 
initiation [2, 72, 77] (HFN: ROX index: NIV; HACOR; 
table 1 in [10]). Subsequent observation is performed 
on an hourly basis. (Figure 1). Silent hypoxemia is a 
contributing factor to this approach. Additionally, 
hypoxemia acts as a short-acting, unsustained stimu-
lus, known as “hypoxic ventilatory decline,” which 
primarily heightens the response to acidosis or hy-
percapnia [9, 74]. For instance, even when SaO2 is 
≤70%, a PaCO2 of approximately 32 mm Hg (end-
tidal <29 mm Hg) can prevent the hypoxic response 
[74]. Therefore, the conventional threshold (PaO2 
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Admission: HFN/VHFN: O2 60-140 L.min-1, Vt or esophageal or nasal pressure monitoring

Ancillary work, Diagnosis, Multimodal approach

Silent hypoxemia, no labored breathing
, 

HFN/VHFN∼1h 

No reduction of Vt>9.5 mL.kg-1 or no 
reduction of △Pes>10 cm H2O

Continued or intensified labored 
breathing

Helmet NIV

Intubation + CMV
Proning?
Paralysis?

Deep sedation?

Early Spontaneous breathing
Upright position

Multimodal approach
Lowered respiratory drive

Ancillary work, Diagnosis, Multimodal 
approach

Escalation

Reduced labored breathing: reduction 
of Vt or △Pes

De-escalation

Multimodal approach

De-escalation

Hourly assessment of spontaneous breathing
Questioning the patient

Fever control (1)

Cooperative sedation (2)
Supplementation if required

Normalized Cardiac Output (3)

Normalized lung water (6)

Normalized CO2 (7)

Normalized hypoxic drive (8)

Upright position (9)

Lowered intra-abdominal pressure (10)

Reduced labored breathing: Mask NIV 

Normalized microcirculation and 
systemic pH (4)

Anti-inflammation (5)

Hourly assessment of 
spontaneous breathing
Questioning the patient

Multimodal approach

Multimodal approach

Escalation

HFN/VHFN∼1h 

Fig. 1. From non-invasive to invasive ventilatory assistance in the setting of severe ARDS. 
The clinical signs of ventilatory failure are: discomfort, intolerance to device, mental de-
terioration, diaphoresis, dyspnea (hyperpnea> tachypnea), inspiratory effort [use of ac-
cessory muscles, phasic activation of the sternomastoid muscle (palpation of the sterno-
mastoid muscle as an index of drive in ARDS [69]), tracheal tug [69], thoraco-abdominal 
swing, suprasternal notch retraction (index of large negative esophageal pressure change), 
intercostal recession [69], nasal flaring, gasping [70]], copious respiratory secretions [71], 
airway bleeding, circulatory instability, electrocardiographic changes, P/F trend. An index 
of drive, airway occlusion pressure (P0.1), is set to 0.5 ms in the spontaneous breathing 
setting (P0.5) [125] and used as such.

Isolated “silent hypoxemia” without signs of labored breathing as the principal symptom: 
HFN/VHFN is the logical therapy. A multimodal approach complements HFN/VHFN to 
allow for an extended period of optimization and observation.

Labored breathing as the principal symptom: continued or intensified labored breathing 
should be interrupted to avoid transitioning from impending to overt failure and arrest. 
HFN/VHFN allows one to simultaneously buy time, observe, carry on the ancillary work 
(insertion of lines, chest X Ray, ECG, CT scan, bronchoscopy, pleural-pulmonary-cardiac 
ultrasounds, etc.) and addressing hypoxemia. Repeated assessments of the tidal volume 
(under mask NIV) and other signs of ventilatory failure or nasal/esophageal pressure [70] 
changes will allow one to assess improvement or deterioration within 2 h (NIV failure 
vs success respectively: Vt: 9.6-12 vs. 7.6-10.2 mL.kg-1 with NIV set to Vt=6-8 mL.kg-1 
[72]; NIV success: reduction in esophageal pressure change≥10 cm H20 [2]; nasal pres-
sure change mirrors esophageal pressure change [70]). Criteria for escalation from HFN 
to NIV are P/F<100, and/or RR>25 bpm, and/or respiratory distress and dyspnea despite 
HFN>60 L.min-1 [70]. Absence of improvement or deterioration within 2 h suggests 
switching to helmet NIV to achieve higher PEEP, restore a fluid-like lung behavior and 
reduced work of breathing. Absence of improvement or deterioration implies running  
through a multimodal approach again, looking for sepsis, coronary artery, delirium tre-
mens, etc., then escalating up to intubation+CMV and avoiding overt failure.

NIV is set to avoid dyssynchrony: low inspiratory trigger, high pressurization time, low-
est expiratory trigger. Helmet NIV requires faster pressurization time≤50 ms, cycling 
off=30% of peak inspiratory flow, higher PS level (+33-50%) and PEEP. High inspiratory 
assistance should not sum up with negative esophageal pressure change to avoid high 
transpulmonary pressure and further inflammation. HFN or NIV allows one to buy time 
and combine physiological tools (circulatory, respiratory, ventilatory, autonomic) within 
a multimodal approach. The check list is (Vt, RR)=f(temperature, agitation, cardiac output, 
microcirculation-arterial lactate, inflammation, lung water-diuresis, systemic pH, PaCO2, 
PaO2): 

1) fever control [156, 157]: 36<θ<35°C, i.e. first [paracetamol, wet sheet+fan or BairHugger] 
then alpha-2 agonist (“no bolus, start slow-go slow, fill them up-then open them up”; dexme-

detomidine or clonidine up to 1.5 or 2 µg.kg-1.h-1, respectively). Alpha-2 agonists develop 
favorable effects slowly (≥3 h) if a slow administration is used to avoid bradycardia or hypo-
tension, after iterative echocardiographic assessment and passive leg raising.

2) agitation [167] addressed to stringent quietness (-2<RASS<0; cooperative sedation: al-
pha-2 agonist as first-line sedative [15]; “breakthrough”: haloperidol 2.5-10 mg bolus or 5 
mg bolus up to 4 administrations; supplementation: infusion up to 50 mg/day).

3) normalized cardiac output [4, 46]: iterative echocardiography coupled with volume, va-
sopressors, inotropes, pulmonary vasodilators.

4) normalized microcirculation and pH (systemic and regional): the alpha-2 agonist nor-
malizes the sympathetic vascular activity, revascularizes the microcirculation, normalizes 
the local pH and arterial lactate and inflammation linked to acidosis.

5) anti-inflammation (source control; alveolar antiinflammation: adequate PEEP to sup-
press atelectrauma; systemic indirect antiinflammation i.e., alpha-2 agonist, steroids).

6) reduced lung water: volume loading before PEEP and administration of alpha-2 ago-
nists then according to clinical signs, lowered PCWP [241] or iterative echocardiography. 
Increased CO or BP upon passive leg raising does not necessarily imply further volume 
loading. Only peripheral perfusion dictates volume load: mottling, capillary refill time, 
diuresis, lactate, pH, CO2 gap, mixed venous saturation. The alpha-2 agonist produces 
anti-ADH effect, diuresis and kaliuresis.

7) normalized CO2: lowered activity of the respiratory generator and inspiratory muscles 
through fever control (36<θ<35°C), microcirculation and pH with an alpha-2 agonist. PS 
level is as necessary to suppress the additional work of breathing caused by the valves and 
tubings (3-7 cm H2O) [116].

8) normalized hypoxic drive [78]: Oxygen therapy is the first line upon admission. a) 
FiO2=1 as briefly as possible (absorption atelectasis, toxicity) lowered step by step to 0.4, 
without lowering the flow, i.e. keeping PEEP on. Normalization of systemic CO2 and pH 
are key before normalizing the hypoxic drive. b) PEEP according to the disease : focal 
ARDS : 5 cm H2O; COVID-ARDS: 8-10 cm H2O; diffuse ARDS: 16 cm H20. An esopha-
geal balloon individualizes PEEP as early as possible. Leaks in the setting of NIV limit the 
ability to use very high PEEP.

9) upright position [7]: reverse Trendelenburg, 60° head up, 45 ° leg down. Upright position 
makes compression stockings or military antishock trouser sometimes useful.

10) lowered intra-abdominal pressure: gastric and bladder decompression, increased co-
lonic motility (mild laxative).

Abbreviations: HFN: O2 high flow nasal; VHFN: very high flow nasal; NIV: non-invasive 
ventilation; CMV: controlled mandatory ventilation; PEEP: positive end-expiratory pres-
sure; PS: pressure support, inspiratory assistance.
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> 55-60 mm Hg, with SaO2 > 92%) provides only a 
rough estimate, indicating merely the flat portion of 
the O2 dissociation curve. Nevertheless, being outside 
this flat portion does not necessarily mandates intuba-
tion. The initial line of therapy focuses on restoring 
oxygenation and normalizing the hypoxic drive [78], 
which may not immediately necessitate intubation but 
instead requires close observation looking for worsen-
ing failure and a multimodal approach.

Muscle dysfunction involves overly active muscles. 
In contrast to the acute over chronic fatigue seen in 
COPD, muscle function in ARDS is typically intact at 
baseline, i.e. prior the onset of ARDS. However, muscle 
failure can occur due to various factors, including a) 
septic dysfunction [79], b) acute cardiac failure leading 
to exhaustion and death [80], and c) prolonged evolu-
tion (as mentioned above).

In early ARDS, a high inspiratory activity (“res-
piratory drive”, “drive”, “neural demand” [42, 43]) im-
pinges upon intact muscles. A high muscular activity 
of intact muscles requires transpulmonary pressure to 
be addressed specifically (low inspiratory assistance, 
low pressure support: PS using upfront helmet NIV). 
This contrasts with acute over chronic fatigue of mus-
cles observed in decompensated chronic COPD with 
reduced CO2 excretion: in the setting of COPD, un-
loading the muscles is necessary for hours or days with 
high PS to overcome fatigue and decompensation [68]. 
By contrast, high PS is inappropriate for ARDS.

3. Respiratory drive
Respiratory and ventilatory physiology refer to brain 
stem processes vs. lung and chest wall function, re-
spectively. Located in the lower brain stem, apposed to 
the vasomotor center, the respiratory generator (“gen-
erator”) controls the respiratory rhythm and phrenic 
activity and integrates the myriads of factors leading 
to the drive and the activation of the ventilatory mus-
cles: (Vt, RR)=f(temperature, agitation, cardiac output, 

microcirculation, inflammation, lung water-diuresis, 
systemic pH, PaCO2, PaO2; Equation 1, to be used as 
a check list). ARDS patients present with a high drive, 
ventilatory muscular activity, inspiratory peak flow 
(“air hunger”) [2, 72, 81, 82], transpulmonary pres-
sure, inflammation, labored breathing and impend-
ing failure. The higher drive present in COVID-ARDS 
patients led away from light sedation and spontane-
ous breathing (SB) [83-85], back to deep sedation, 
paralysis, protective ventilation and proning. As em-
phasized early April 2020 physiology was at loss in a 
bewildered world (francais.medscape.com/voirarticl
e/3605845?=null&icd=login_success_email_match_
fpf&form=fpf). Dissecting and normalizing the myri-
ads of factors [35, 74] involved in the genesis of hy-
perpnea and tachypnea allows one to lower the drive 
immediately following admission (“multimodal ap-
proach” [35]). Normalized drive rests on a functional 
generator at variance with the suppressed activity of 
the generator and suppressed drive caused by general 
anesthesia+paralysis.

4. PEEP
As oxygenation is not the key issue anymore in ARDS 
[21, 35], the rationale for using high PEEP does not 
rest on oxygenation. Poor oxygenation (P/F<150) is 
unassociated with the increased inspiratory activity [2] 
but with inflammation [86].

In the setting of diffuse alveolar damage, solid-like 
behavior leading to pendelluft, increased spontane-
ous ventilatory effort [35, 87], atelectrauma, WOB 
and SILI are to be avoided. High PEEP prevents cy-
clic collapse of the bronchiolar tree [88] or of alveoli 
(atelectrauma) [89], thus suppresses the mechanical 
inflammation (SILI or VILI). As observed during the 
first breath after birth (-70 cm H2O [90]), the first in-
flation of a kid’s balloon requires very high transmu-
ral (transalveolar) pressure; further inflation requires 
minimal incremental pressure. Once inflated by ad-

Table 1. Criteria for non-invasive ventilatory failure [76]

•	Absence of improvement or worsening of clinical signs observed on admission, including oxygenation data 
and increased respiratory rate

•	Appearance of signs of ventilatory muscle fatigue or use of accessory muscles
•	Presence of acidosis, both respiratory and metabolic
•	 Inability to properly clear respiratory secretions
•	 Signs of circulatory instability, including hyperlactatemia
•	Deterioration of consciousness or presence of seizures
•	 Intolerance to device, especially mask wearers
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equate PEEP, the “baby lung” in adult ARDS operates 
on the highest slope of the expiratory [91] P-V curve 
(highest compliance). The lung switches from solid- to 
fluid-like behavior [2], with a reduction in  esophageal 
pressure changes and DP. The low PEEP achieved with 
HFN/NIV cannot recruit all atelectatic, non-aerated, 
areas. The objective is only to improve low VA/Q ar-
eas [92, 93], at variance with fully reopening the lung 
[94, 95] and correcting entirely the intrapulmonary 
shunt. Such a minimalist objective requires much 
lower PEEP levels. If so, “protective” ventilation is not 
protective because of low Vt, but because of PEEP and 
reduced solid-like behavior, WOB, pendelluft [87] and 
atelectrauma. Recruitment increases resting volume 
and FRC, lowers DP and decreases lung deformation 
(strain [5], Vt/end-expiratory lung volume ratio [6]). 
By contrast, low PS, Vt and transpulmonary pressure 
minimizes stress [5, 6]. In addition, under SB, the ac-
tive diaphragm keeps the alveoli open during a longer 
expiratory interval [96], synergistically with PEEP.

The low PEEP achieved with HFN/VHFN/NIV 
may suit the relatively high compliance and low PEEP 
requirements observed in the setting of early COV-
ID-ARDS [61, 63] and focal ARDS. PEEP is set as a 
function of the considered disease, using various tech-
niques a) immediately following admission, a “one size 
fits all” approach uses the ARDS network table [97, 98]. 
Evidently, leaks observed in the setting of mask NIV 
would not allow setting the highest PEEP levels. This 
bears little consequences in the setting of focal ARDS 
or COVID-ARDS as lower PEEP levels are required 
when compared to diffuse ARDS. b) given a CT scan, 
rules of thumb are useful: “focal” ARDS: ~5 cm H2O; 
diffuse ARDS: ~10 cm H20 [55]; mild vs. severe: 5-10 
vs. 15-20 cm H20 [98]; COVID-ARDS: 8-10 cm H20 
[48] c) titrated to respiratory compliance [8] (COVID 
: avoid overdistension, increased dead space, hypercar-
bia and heightened drive; typical ARDS: recruitment 
of perfused units: low VA/Q, and increased compli-
ance d) as soon as possible, an esophageal balloon in-
dividualizes PEEP [99, 100] in SB patients [2, 70]. e) 
impedance tomography or lung echography combined 
to arterial and venous gases and echocardiography are 
another option.

Limits of controlled mechanical vs. spontaneous 
ventilation 

1. Limits of controlled mechanical ventilation 
ARDS is managed [26] using intubation, general an-
esthesia [101] (GA renamed “deep sedation” [102], 

analgesia-sedation), paralysis [103], proning [22] and 
low DP [104]. Nevertheless, this is not a treatment for 
ventilatory failure [21]: CMV only buys time [49] for 
self-healing [21, 105] of the alveolus or of the capillary. 
Many issues are unsettled: 

a. despite remarkable results [103], paralysis should be 
used sparingly, e.g., high drive [106]. 

b. deep sedation is associated with ventilator-to-patient 
dyssynchrony [107] and death [85] in ARDS patients 
[108].

c. no comparison of SB vs. paralysis [109] has been pu-
blished. SB with airway pressure release ventilation 
[110, 111] is not discussed. Three issues are to be 
considered: 

i. no trial addresses the various Vt in the setting of 
ARDS (2, 4, 6, etc. mL.kg-1; appendix). The only 
evidence is the retrospective linear association be-
tween improved outcome and lowered DP<14 cm 
H2O [104].

ii. proning: That many humans sleep in the prone 
position is not an argument for awake proning in 
early COVID-ARDS: humans move freely from 
supine to prone and back during sleep, at variance 
with imposed prolonged proning in a CCU envi-
ronment with discomfort.

The excellent epidemiological result [22] is meth-
odologically weak. First, the results are not segregated 
between P/F<100 vs. <150, mixing severe and moder-
ate ARDS. Second, no comparison exists between su-
pine vs. prone vs. lateral+prone+lateral positioning; 
multiple repositioning is presumably the key to address 
compressive atelectasis, but not necessarily proning it-
self. Third, P/F returns towards baseline after turning 
supine, with no comparison to supine group (figure S2 
[22]). The cause of ARDS is unaltered by proning; a 
rescue therapy causes no miracle. Simply the number 
of patients requiring proning progressively decreases, 
improved by multiple repositioning.

Mechanically, collapse is a function of the hydro-
static pressure imposed on the alveolus (i.e. the weight 
of the heart on the left lung). Thus, proning opens 
more non-dependent dorsal zones than it collapses 
in dependent sternal regions [112]. Indeed, proning 
leads often to a small improvement in PaO2 [62], due 
to better VA/Q matching in vaso-dysregulated tissue 
[6] or perfusion redistribution in response to pressure 
or gravity [62] but not to alveolar recruitment. Given 
high compliance, minimal P/F improvement linked to 
CCU proning presents minimal interest in the setting 



 298 • The Journal of Critical Care Medicine 2024;10(4) Available online at: www.jccm.ro

of early COVID-ARDS, imposing on limited staff re-
sources ([6] “responders”: P/F increase >20 mm Hg in 
75% of the patients; [62, 113]). In intubated patients, 
proning vs. upright position increases P/F to a similar 
extent in patients with the lowest P/F (moderate and 
severe ARDS, panel B, Appendix vs. table S8 [7, 22]). 
Proning used in the setting of intubated paralyzed 
patients [22] was extended to awake non-intubated 
patients in the setting of early COVID-ARDS. Given 
these limitations, proning in awake non-intubated pa-
tients may avoid intubation [8].

iii. SB: Severe ARDS in single-organ failure patients 
managed with early SB under cooperative sedation 
carries a ~8.5% mortality in COVID-ARDS [39].

iv. absence of sedation: Passive hyperventilation be-
low the apnea threshold without sedation carries 
a low mortality in COVID-ARDS [114].

d.  the absence of a prone vs. upright position trial (re-
verse Trendelenburg, head-up +60°, legs down: -45°) 
[7].
These weaknesses leave recommendations [26] with 

shaky foundation [115]: “loss of muscle tone…. caused 
by muscle relaxants, anesthetics, and sedatives, and the 
use of high oxygen concentration in inspired gas are the 
prerequisites to produce atelectasis in…. healthy sub-
ject during anesthesia. This…. common treatment in 
ARDS… adds to the collapse and consolidation caused 
by the disease itself”.

2. Limits of spontaneous breathing
a. CPAP vs. inspiratory assistance: HFN provides 

CPAP and increased end-expiratory volume without 
inspiratory assistance. Thus, it does not unload the 
inspiratory muscles. If a high drive is not normalized 
early,  and given the load imposed by the valves and 
tubing [116], this absence of unloading may progres-
sively cause acute fatigue of intact muscles, requiring 
switching to PS or CMV to prevent progression to 
failure.

b. High vs. low inspiratory assistance: The high inspi-
ratory effort, and Vt, is influenced by inflammation 
and drive but independent of the level of inspirato-
ry assistance (PS level) [72, 117]. A high inspiratory 
effort manifests as hyperpnea, hypocapnia, a large 
inspiratory esophageal pressure drop (∆Pes=26-40 
cm H2O) and low dynamic compliance (Vte/∆PL) 
[2]. Excessive inspiratory assistance further ampli-
fies the inspiratory esophageal pressure change, the 
transpulmonary pressure [81, 118], Vt, atelectrauma, 
and inflammation. Therefore, inspiratory assistance 
is required only to alleviate the WOB caused by the 

ventilatory apparatus rather than to unload the mus-
cles (valves, tubings; PS=3-5 cm H20 [116]). More, 
inspiratory assistance cannot alleviate solid-like be-
havior, atelectrauma and mechanical inflammati-
on. Adequate PEEP can achieve this when the lung 
is at its optimal compliance. Setting PS to achieve 
a Vt=7-10 mL.kg-1 [33] will completely unload the 
ventilatory muscles but may be detrimental because 
the baby lung does not tolerate such high Vt [119]. 
Rather, esophageal [2] or nasal [70] pressure changes 
should be limited. Therefore, an uncontrollable dri-
ve leading to labored breathing and increased WOB 
does not necessitate increased PS but rather a reduc-
tion in drive, with early initiation of helmet NIV [82, 
120]. Failed NIV is defined as the absence of reducti-
on in ∆Pes<10 cm H20 within 2h (reduced dyspnea 
and hyperpnea i.e., success: ∆Pes=8-15; failure: 30-
36 cm H20) [2]. Accordingly, increased Vt>9.6-12 
mL.kg-1 is the hallmark of early NIV failure [72]. 
NIV failure is associated with death either because of 
uncontrollable drive in a very sick patient [20], or a 
too high PS level. By contrast, successful NIV require 
close observation with early escalation only if conti-
nued labored breathing persists: HFN, VHFN, mask 
NIV, helmet NIV (Figure 1).

 �Oxygen high flow nasal and non-
invasive ventilation

Oxygen high flow nasal

Classical [121] or updated [122, 123] Optiflow help 
normalizing labored breathing while simultaneously 
addressing the ancillary work (figure 1) and a mul-
timodal approach [35]. In the setting of early ARDS, 
HFN takes precedence over NIV [124], with certain 
caveats [82, 120]. HFN increases CO2 wash-out and 
dynamic compliance, comfort, oxygenation [125] and 
clearance of secretions [10]. HFN reduces inspiratory 
effort, CO2 production and RR due to a resistive ef-
fect and prolonged expiration. The degree of improve-
ment correlates with the flow rate and PEEP, leading 
to increased FRC, restored fluid-like behavior, and de-
creased inspiratory WOB. For instance, administering 
HFN at 50 L.min-1 to patients in septic shock diminish 
the respiratory drive (P 0.5) and esophageal pressure 
change [125].

With HFN, O2 flow up to 60-80 L.min-1 is achieved 
through conventional Optiflow or a ventilator. Modi-
fied Optiflow can administer up to 120 L.min-1 [123]: 
two blenders into one nasal prong convey a very high 
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flow (VHFN; 1.5 mL.kg-1 [123]). In healthy volun-
teers, the mean airway pressure ranges from ~3 to ~12 
cm H2O, generating PEEP (35 L.min-1: range: 1.5-5.3 
cm H2O; 100 L.min-1: range: 7.3-16.2 cm H2O [121, 
122]). In the setting of early focal and COVID-ARDS, 
this may allow enough recruitment to avoid intuba-
tion when silent hypoxemia without labored breathing 
is the principal derangement. However, VHFN ap-
pears poorly tolerated after 20 min [123]. The reason 
is unclear : poor humidification? high expiratory re-
sistance and expiratory WOB [123]? This leads to the 
combination of discontinuous NIV and discontinuous 
HFN, making the technique complex and possibly in-
adequate to avoid intubation.

In the setting of acute failure, high inspiratory peak 
flow leads to room air entrainment under HFN. Ex-
ercise generates a peak inspiratory flow up to 255 
L.min-1 [126, 127] and mimics the peak flow observed 
during acute failure [127]. A challenge is to match such 
a high peak inspiratory flow. Simple tools minimize air 
entrainment, either alone or combined:

 – A simple surgical mask applied over the mouth in 
addition to HFN 60 L.min-1 decreases the RR (28 to 
26 breaths per min: bpm), increases the PaO2 (59 to 
79 mm Hg) and P/F (83 to 111) [128]. Adding a “dou-
ble trunk” mask without adding O2 to HFN=40-60 
L.min-1 increases PaO2 (63 to 88 mmHg in 11 res-
ponders out of 15 patients) [129].

 – in healthy volunteers, HFN 50 L.min-1 within a stan-
dard helmet achieves stable high PEEP=8 cm H2O 
and increases CO2 washout (PetCO2=33 mm Hg) 
[130].

 – in addition to the nasal prong, insertion of up to 2 
prongs through the mouth can achieve O2 flow~120-
180 L.min-1. In our experience, two classical Opti-
flow prongs, oral and nasal, achieves O2~120-140 
L.min-1 and high SaO2 (Quintin, unpublished data).

 – cooperative sedation (above: 2<RASS<0) evokes in-
difference to CCU stimuli and lowered VO2, enhan-
cing tolerance to continuous HFN/NIV, noise, humi-
dification, and nasal prong(s) for days.

Non-Invasive ventilation

Labored breathing and fatigue lead to NIV, which is a 
consequence of either continued or increased drive or 
to the absence of any inspiratory assistance with HFN/
VHFN. Criteria for escalation to NIV are P/F<100, 
and/or RR>25 bpm, and/or ventilatory distress and 
dyspnea despite HFN>60 L.min-1 [70].

Ventilator-to-patient dyssynchrony: Using NIV, the 
key issue is to adapt the ventilator to the patient, not 
the opposite [132]. First, inspiratory effort occurs dur-
ing early inspiration, especially when high inspiratory 
activity occurs and low flow settings are used [133]. 
Patient-ventilator dyssynchrony occurs only if the ven-
tilator’s inspiratory assistance is suddenly lost during 
continued inspiratory muscle contraction [134]: the 
more intense the drive, the higher the flow require-
ment [135]. Second, the ventilator’s inspiratory cycle 
should stop immediately before the beginning of the 
patient’s expiratory effort [133].

1. Mask NIV
To our surprise, with a tightly adjusted mask, Drager 
ventilators (Evita XL, Infinity V500) combined to co-
operative sedation allows for achieving PEEP up to 20 
cm H20 with minimal leaks, for days [136]. Despite 
leaks and tolerance issues, since the pathophysiology of 
ARDS differs only in the amplitude of the dysfunction 
in intubated vs. non-intubated patients and the litera-
ture is limited, parameters set under invasive ventila-
tion are used [9, 36, 37, 40]:
a. PEEP is set on a patient-per-patient basis given the 

heterogeneity of ARDS. Leaks lower PEEP; howe-
ver, the patients treated with NIV are less severe or 
present to the CCU earlier in the evolution of their 
ARDS. An esophageal balloon inserted as early as 
possible allows for observing reduced esophageal 
pressure change (∆Pes<10 cm H20 [2]) and impro-
ved labored breathing. In some patients, NIV ap-
pears successful within minutes when high PEEP 
combines with low PS [136], possibly restoring fluid-
like behavior.

b. PS: Under PS, plateau pressure (Pplat) is measured 
during a brief inspiratory hold in intubated patients 
[137]. NIV was initially used in the setting of acu-
te decompensation of COPD with muscular fatigue, 
and thus requiring high PS amplitude. As the patient 
population has switched from COPD [68] to ARDS 
and SILI [5],  inspiratory assistance is lower:

i. PS=5, PEEP=5-15 cm H2O, high Vt (500-600 
mL) resulting in improved dyspnea in the setting 
of early ARDS following acquired immunodefi-
ciency syndrome [138].

ii. PS=7 cm H20, PEEP<10 cm H20 to minimize 
leaks [72]. The Vt was ~8-9 in the success group 
vs. 11-12 mL.kg-1 in the failure group. In con-
trast, late ARDS is characterized by low Vt (rapid 
shallow breathing: ~4.2 mL.kg-1 [139]).
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iii. In our experience, with a normalized WOB, the 

“Smartcare” software [140] is highly efficient in 
reducing PS (Drager Evita 4XL or Infinity V500 
with Smartcare) [141]. Smartcare reduces PS 
from a preset level ~6-8 cm H20 to a final level 
~3-5 cm H20. The inspiratory WOB is almost en-
tirely suppressed with no phasic activation of the 
sternomastoid muscle and no sternal notch re-
traction (high PEEP-low PS termed “inverted set-
tings” [36]). Indeed, a meta-analysis suggests that 
high PEEP-low PS lowers intubation rate from 43 
to 25 % (PEEP=8±2 cm H20, PS=7±2 cm H20) 
[142]. 

iv. The reduction in esophageal pressure changes 
observed in the NIV success group is associ-
ated with the following initial settings: PEEP~10 
cm H20 and PS~10 cm H20 adjusted to achieve 
Vt<9.5 mL.kg-1 [2]. After 2 h, PS was lowered 
(~11 cm H20 to ~9 cm H2O) in the failure group 
to decrease the Vt [143]. Nevertheless, in contrast 
with our proposed high PEEP-low PS, the ob-
served Vt was ~11 mL.kg-1 regardless of success 
or failure (table 2 [2]). When compared to failure, 
success is associated with lower esophageal pres-
sure change, higher PS~17 cm [143] and similar 
Vt [2].

v. in the setting of ARDS, a low inspiratory assis-
tance (PS=6 cm H20) was used to confirm high 
Vt independent of PS level [144].

c. Inspiratory trigger at the lowest level: surprisingly, 
under cooperative sedation, delineated below, and 
normalized drive, no asynchrony is observed (mo-
notonous breathing, no breath stacking, no double 
triggering).

d. Slope of pressure ramp: The highest possible pressu-
rization time generates a short inspiratory rise time 
and leads to the shortest and highest inspiratory 
peak flow [145]. This minimizes inspiratory effort, 
esophageal pressure change [146], pendelluft, ex-
tracapillary fluid filtration, ventilator-patient asyn-
chrony and inspiratory WOB in intubated patients 
recovering from ARDS [146, 147]. Meeting the high 
demand at once during early inspiration lowers 
WOB [147]. When using mask NIV, the slope is typi-
cally set at 100-200 ms [148, 149].

e. Flow termination should be achieved with the lowest 
expiratory trigger (lowest “cycling off ”). First, with 
low compliance, the peak inspiratory flow is reached 
rapidly. Extremely early peak flow generated by the 
ventilator will terminate too rapidly the ventilator’s 
inspiratory flow sooner than the patient’s own in-

spiratory time, resulting in unmet demand and ven-
tilator-patient asynchrony [59, 150]. Conversely, a 
long ventilator inspiratory time reduces asynchrony 
[2, 59] and increases Vt [135]. Second, a prolonged 
ventilator inspiratory time may activate the expirato-
ry muscles to terminate the breath [150]. This leads 
to forced expiration and increased expiratory WOB 
[134]. Therefore, the inspiratory time should be ne-
ither too long (≤1s in acute distress [151]) nor too 
short. In the setting of invasive ventilation, cycling 
off is set from 1% of peak inspiratory flow [59] to 5% 
[134, 147]. In the setting of NIV, cycling off is 25-
30% [2, 82].

2. Helmet NIV 

a. Standard setting: Helmet NIV was recently reviewed 
[152]. Ventilatory flow>100 L.min-1 avoids CO2 
rebreathing (CPAP systems: Series 500, Sea Long 
Medical System and CaStar, Starmed) [153]. As ob-
served in the setting of HFN/VHFN, high flow incre-
ases the PEEP level. This may increase success when 
early severe diffuse ARDS is considered. By contrast, 
the helmet achieves less efficient pressurization and 
ventilator-patient synchrony. Nevertheless, new 
helmets are more comfortable and perform better 
[154]. Given the high compliance of the helmet, PS 
is modified [148]: fastest pressurization time≤50 ms 
(improved ventilator-patient synchrony), cycling off 
set at 50% of peak inspiratory flow down to 30% in 
case of double triggering [152], higher inspiratory 
assistance (+33-50%) and higher PEEP [71]. With 
this optimized synchrony, reduced RR, inspiratory 
effort, WOB, intubation rate and mortality are ob-
served (intubation: mask: 61%; helmet: 18%; morta-
lity: mask: 56%; helmet: 34%) [71].

b. Upfront helmet NIV: Patients with the largest reduc-
tion in esophageal change do not require intubation 
[2]. Patients presenting with an inspiratory effort>10 
cm H2O despite helmet NIV require intubation [82] 
(absence of improvement of labored breathing or of 
esophageal pressure changes [152], dyspnea, worse-
ning oxygenation or ineffective coughing; mortality: 
63%). The implication is that patients presenting 
with hypocapnia, vigorous inspiratory effort and se-
vere lung injury require upfront helmet NIV and clo-
se observation to avoid delaying intubation, skipping 
HFN/VHFN/mask NIV [120]. Indeed, the absence 
of reduction of esophageal pressure changes (∆Pes) 
is associated with death under NIV [2]. Neverthe-
less, simultaneous to optimized physiological mana-
gement (e.g., helmet), lowering the drive through a 
multimodal approach is required.



The Journal of Critical Care Medicine 2024;10(4) • 301Available online at: www.jccm.ro

Patients presenting with a low inspiratory effort and 
small esophageal change on HFN require low PS, to 
avoid high transpulmonary pressure [82] during hel-
met NIV. When a high inspiratory effort and large 
negative esophageal change under HFN are observed, 
helmet NIV is superior to HFN (P/F≤200; shortest 
pressurization time, PEEP~10-12, PS~8-10 cm H20; 
reduced dyspnea, intermediate discomfort) [82]. The 
reduction of inspiratory effort during helmet NIV was 
larger in patients with the largest inspiratory effort 
during HFN, linked to inflammation or deteriorat-
ing mechanics, but not to oxygenation [86]. Accord-
ingly, patients presenting with low PaCO2<35 mm Hg 
benefit from helmet NIV, unlike patients with a high 
PaCO2>35 mm Hg [10].

Partial muscle relaxation [144] may represent an ad-
ditional tool when the negative evolution of esophageal 
swings leads to helmet NIV combined to a multimodal 
approach, before a decision to intubate. In patients 
presenting with ARDS and a high Vt>8 mL.kg-1 a 
rocuronium infusion (5-37 mg over 6-60 min) was 
titrated to reduce the Vt (~9 to ~6 mL.kg-1, with in-
creased PaCO2) and maintained for 2 h under conven-
tional sedation (midazolam or propofol, sufentanil). 
Neurally adjusted ventilatory assist (NAVA) preserved 
diaphragmatic activity [144]. Such an approach may 
be useful in intubated or non-intubated patients un-
der the care of anesthesia personnel with appropriate 
end tidal CO2, Vt, SaO2 monitoring. Although time-
consuming, it may allow for the multimodal approach 
to achieve the temperature, agitation, systemic and mi-
crocirculation, kidney and metabolic goals under slow 
alpha-2 agonist sedation. Taken together, this suggests 
a 2 h window to improve the patient physiologically 
(HFN, NIV) [2, 72], then an additional 2 h using par-
tial muscle relaxation [144], while running the multi-
modal approach from admission onwards (Figure 1). 
Continued or increased labored breathing despite this 
full-fledged treatment implies intubation, and low PS 
under continued multimodal approach [9].

Invasive ventilation, a rescue therapy

The sickest patients may benefit from immediate hel-
met NIV+multimodal approach. Within 2h, failed 
NIV leads to intubation+CMV+proning (only a “res-
cue” therapy) with continued multimodal approach. 
Early SB and upright position are used in the intubated 
patient as soon as the drive is normalized [9, 39-41]. 
Severe ARDS caused by e.g. peritonitis or acute pan-

creatitis necessitates upfront invasive ventilation until 
inflammation resolves. Indeed, all attempts delineated 
above may fail avoiding intubation, leading to effective 
invasive ventilation [100] or ECMO [100]. Less severe 
patients will undergo escalation under multimodal ap-
proach: HFN, then VHFN, and finally NIV (Figure 1). 
This approach may also apply in the setting of moder-
ate septic shock [125]. 

Within the factors evoking hyperpnea and tachyp-
nea (Equation 1), lung and systemic inflammation, 
metabolic acidosis and inadequate microcirculation 
are difficult to control. Many patients are managed 
with CMV either due to inappropriate NIV set up or 
inappropriate sedation with anesthetics/opioids, or 
extensive illness [20]. For example, full physiological 
support may coexist with high transpulmonary pres-
sure (38 mm Hg), oedema, inflammation, and micro-
emboli (PS=10, PEEP=15 cm H20, ECMO to remove 
77% VCO2, normalized pH, PaCO2, PaO2) [155]. 
Thus, when the drive exceeds the muscle capacity de-
spite a multimodal approach, rigorous clinical criteria 
for intubation+CMV are needed.

 �Pathophysiology and HFN/NIV merge 
in a multimodal approach

The multimodal approach (Figure 1) is common to 
HFN, VHFN, NIV and early SB following short term 
CMV+paralysis [9]. It relies on normalizing the res-
piratory drive: regardless of the ventilatory tool, the 
drive is normalized with Equation 1 as a checklist: (Vt, 
RR)=f(temperature, agitation, cardiac output, micro-
circulation, inflammation, lung water-diuresis, system-
ic pH, PaCO2).

1. Fever control [156]
A baby lung allows only for baby O2 consumption 
(VO2) requirements. Thus, to reduce VO2, tempera-
ture is lowered to 36<θ<35°C i.e., the lowest tempera-
ture of human at night. In patients with reduced car-
dioventilatory reserve, VO2 is lowered [157] (~8-10% 
per °C [158] e.g., minus ~30% from 39.5 to 35.5°C). 
In ARDS patients, fever control is associated with im-
proved survival [156]. Furthermore, in healthy volun-
teers, adrenaline infusion increases VO2 and Vt (re-
spectively: +11; +17% [159]) and the inspiratory flow 
[159], unlike a reduced drive. As the ARDS patient is 
often septic and requires vasopressors, they further in-
crease VO2.
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By contrast, alpha-2 agonists lower a) the activation 
threshold of cold defense effectors (“set point”) [160-
162] b) the temperature by >1°C in healthy volunteers 
[163] c) energy expenditure and VO2 by ~15-18% 
[163, 164] d) muscular tremor [165] and VO2, when 
baseline is high [166, 167]. Upon admission, paraceta-
mol and external cooling are immediately followed by 
the administration of an alpha-2 agonist.

2. Cooperative sedation
Agitation independent of the ventilatory failure (such 
as anxiety, delirium, pain) is to be addressed. Dexme-
detomidine or clonidine are administered as first-line 
sedatives to stringent quietness (-2<RASS<0; up to the 
“ceiling effect”: dexmedetomidine or clonidine: 1.5 or 2 
µg.kg.h-1 respectively; no bolus administration; start-
ing with low doses and tirating slowly; fill them up when 
hypovolemia is present; open them up if microcircula-
tion is compromised  [15-17]). The shorter half-life of 
dexmedetomidine facilitates nursing care (De Kock, 
personal communication). Alpha-2 agonists combine 
cardiac and vascular sympatholytic [168] and cardiac 
parasympathomimetic [169] actions, thus normaliz-
ing many factors within Equation 1. They evoke also 
sedation [170-172], slow wave sleep [173], normalize 
respiratory drive [174] with spontaneous breathing 
[39, 41], indifference to pain (“analgognosia” [175]) 
and to psychosocial or environmental stimuli  (“imper-
turbability of mind”: ataraxia) [172], prevent delirium 
[176-178], reduce reactivity to noxious stimulus [179], 
especially in addict [180], young, combative patients. 
Importantly, alpha-2 agonists do not depress the res-
piratory generator (“generator”) [174]. The generator 
achieves adequate SB and NIV [181] without asyn-
chrony and respiratory depression [163, 182]: a low Vt 
is observed with low or normal RR, according to tem-
perature (35<θ<36°C). Indifference is achieved allow-
ing for physiotherapy and continuous HFN/NIV [181, 
183, 184] for days, without masking failure. Alpha-2 ag-
onists lower the activity of the vasomotor center [185] 
and cardiac and vascular, arterial and venous, sympa-
thetic activity, reduce the duration of CMV [13] and 
CCU stay [186], improve systolic [187] and diastolic 
[188] functions, normalize microcirculation [189], in-
crease lactate clearance [190-192], lower noradrenaline 
requirement [193-198]. However, alone, alpha-2 ago-
nists are useless. Only combined respiratory, ventilatory, 
circulatory, and autonomic interventions yield efficacy.

Supplementation: To achieve -2<RASS<0 and HFN/
NIV for days, and given a ceiling effect [199], supple-

mentation is sometimes required (“breakthrough”: 
haloperidol 2.5-10 mg i.v. bolus; infusion: haloperidol 
50 mg/48 mL; 0.25 to 2 mL.h-1 [15-17]). Given the de-
pression of the generator evoked by midazolam [174], 
propofol and opioids, we advise against anesthetics 
and opioids. They depress the drive, impose closer 
observation and complicate the management. In addi-
tion, hyperpnea may resume after curare or sedation 
withdrawal [200]. Enforcing sleep-wake cycle is cru-
cial [173].

Pain management differ between medical and surgi-
cal patients, with medical patients typically requiring 
fewer analgesics compared to surgical patients. Opi-
oid-free analgesia can be employed to avoid respira-
tory depression and SB suppression (e.g., ketamine 50 
mg+nefopam 100 mg+tramadol 400 mg, 48 mL, 0.1-
2 mL.h-1 [201]). Tramadol, being a weak opioid, has 
minimal respiratory depression effects. Cognition in 
elderly (nefopam) and acute kidney injury (tramadol) 
patients lead to rapidly lower the doses. The need for 
opioid-free analgesia typically decreases within 24-72h 
following administration of alpha-2 agonists.

Cardio-respiratory coupling [44, 45] and sympathetic 
normalization: First, there is a coordination between 
inspiratory phrenic and cervical sympathetic activity 
[202] (“respiratory-cardiovascular coupling”). Partial 
asphyxia evokes sympathetic activity throughout in-
spiration and expiration [202], in line with inadequate 
sympathetic hyperactivity in the setting of ARDS. 
Second, the interaction is also from the vasomotor 
center to the respiratory generator. Third, volume and 
vasopressors normalize the hypotension and the ba-
roreflex-mediated sympathetic vascular hyperactivity. 
Following normalizing brain stem cardio-respiratory 
activity, attention can be focused on optimizing venti-
latory mechanics, using appropriate tools (HFN, high 
PEEP-low PS, PEEP+CMV).

3. Normalized cardiac output (CO)
Alpha-2 agonists should not be used in cases of hy-
povolemia, sick sinus syndrome and atrio-ventricular 
block [15-17]. Positive pressure ventilation and PEEP 
require volume expansion to prevent hypotension and 
the need for vasopressors [203] as well as to avoid a 
pseudo-normalized intrapulmonary shunt [4].
a. Adequate CO and adequate lung perfusion (Q) are 

necessary to normalize shunt. This also requires suf-
ficient PEEP to achieve proper end-expiratory O2 
diffusion (VA) [4]. Firstly, upfront normalization 
of CO enhances pulmonary flow (Q); second, high 
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PEEP recruits ventilated alveoli (VA). Together, this 
normalizes the VA/Q distribution and improves 
oxygenation (patient 10 in [4]).

b. Conversely, a pseudo-normalized shunt results from 
inadequate CO. First, high PEEP reduces CO, leading 
to decreased flow to unventilated alveoli, and an in-
creased VA/Q ratio. Secondly, high PEEP increases 
the ventilation to unperfused alveoli, causing an in-
crease in dead space [92]. As a resulted, despite an 
elevated PaO2, the shunt remains “pseudo-norma-
lized” [4], as the skewed VA/Q distribution persists 
unchanged by PEEP itself, and the low VA/Q does 
not improve.
To achieve adequate VA/Q, first, iterative echocar-

diography monitors the ventilation-induced changes 
in vena cava diameter, the right ventricular dilation, 
the mitral and aortic flows, the left ventricular [LV] 
contractility and the presence of foramen ovale (pre-
sent in ~20% of the patients [204]). Various tools as 
volume, vasopressor, inotrope, pulmonary vasodila-
tor are used to achieve adequate CO, mixed venous 
saturation, CO2 gap, pH and lactate. Additionally, 
the combination of PEEP and SB acts synergistically. 
SB evokes diaphragmatic compression of the hepat-
osplanchnic blood [205] enhancing venous return, 
while PEEP decreases LV afterload [206]. Second, in 
addition to arterial and venous gases, impedance to-
mography or lung echography may assist  in observ-
ing adequate VA.

Sympathetic normalization and improved microcir-
culation: First, the heightened vascular sympathetic 
activity is associated with high lactate [207]. The al-
pha-2 agonists normalize the sympathetic activity, the 
microcirculation [189] and the lactate concentration 
[189-192]. Systemic and regional metabolic acidosis is 
normalized within ~3-6 h, lowering peripheral inflam-
mation and respiratory drive. Lastly, acute kidney inju-
ry and associated metabolic acidosis are managed with 
renal replacement therapy. In summary, counterintui-
tively, the treatment approach for ARDS prioritizes cir-
culatory intervention [4, 46, 203, 208, 209] followed by 
ventilatory strategy. 

4. Inflammation
Patients have transitioned from young trauma patients 
with preserved immune system at baseline and heading 
into severe delayed injury-acquired immunodeficien-
cy [210], to elderly patients presenting with chronic 
baseline heightened inflammation, such as those with 
COVID-ARDS. Acute inflammation can result from 

conditions like sepsis, emphasizing the importance of 
early source control, or systemic acidosis, or impaired 
ventilatory mechanics (SILI or VILI).
a. Direct  immuno-modulation can be targeted (e.g., 

anti-IL-6) or non-targeted (e.g., steroids). Both 
address the non-mechanical inflammation caused 
by the disease (e.g., steroids and SARS-CoV2 [211]) 
or the syndrome (e.g., systemic sepsis). In addition, 
steroids may address the inflammation caused by 
atelectrauma and SILI.

b. Indirect immuno-modulation: alpha-2 agonists pre-
sent indirect systemic anti-inflammatory effects, a 
facet too often overlooked [195, 212-219]. They nor-
malize heightened sympathetic hyperactivity, and 
upregulate beta-adrenergic receptors on lympho-
cytes [220]. This mechanism may extend to normali-
zing the functioning of all adrenergic receptors on all 
immune-competent cells. This may alleviate immu-
no-paralysis.

c. Mechanical inflammation and SILI: Reduction of es-
ophageal pressure changes is co-related to Vt reducti-
on and radiologic improvement, respectively after 12 
and 24 h [2]. Therefore, a normalized drive normali-
zes the WOB and suppresses SILI [5], early on.

5. Lung water
Reducing lung water is crucial [221, 222] when in-
flammation [223] play a significant role, such as in 
high permeability edema or large negative esophageal 
changes. Once CO is normalized, volume infusion 
should be minimized. Indeed, in the setting of SB, low 
Vt and compliance [222], a ~10-15% CO increase to 
passive leg raising does not necessarily indicate the 
need for further hydration. To minimize lung water, 
the overall response is considered, at variance with BP 
or CO themselves: mottling, capillary refill time [224], 
urine output, venous SO2, lactate, CO2 gap, vena cava 
ventilatory changes.

Additionally, a) SB facilitates better lymphatic drain-
age compared to CMV [225] b) sympathetic blockade 
reduces pulmonary vein pressure and lung edema 
[226] c) alpha-2 agonists evoke diuresis through an 
anti-ADH effect [227]. The issue is not anymore the 
total volume of fluids administered during early resus-
citation or the first day on admission, but the overall 
balance of fluids and weight achieved after 24, 48, 72 h  
d) following organophosphate poisoning, clonidine 
suppresses capillary filtration, thus pulmonary edema 
[228]. f) following lung contusion, clonidine improves 
inflammation [229]. 
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6. CO2
Hypocapnia is an ominous sign in the setting of early 
ARDS [72]. PaCO2 is lower when NIV failure occurs 
[2, 72], irrespective of P/F (>200 [72]; 101-170 [2]). This 
hypocapnia is close to the apneic threshold (healthy 
volunteer: ~30-35 mm Hg; NIV failure: 32 mm Hg [72]; 
high inflammatory status e.g. COVID: ≤30 mm Hg). 
This suggests switching early to helmet NIV [82, 120]. 

The striking observation is the occurrence of hyper-
pnea and hypocapnia, below the apneic threshold [230, 
231]. Indeed, the threshold is overridden by systemic 
acidosis or central nervous system inflammation or 
stimulation of lung receptors [42, 43]. Athletes endur-
ing Vt≥3 L, minute ventilation>160 L.min-1 and es-
ophageal pressure changes≥60 cm H2O for hours [77, 
119, 232] suggest that increased Vt per se is not det-
rimental, but rather inflammation plays a significant 
role. Could this be a consequence of pH, PaCO2 or 
metabolic or cortical excitatory inputs onto the respir-
atory generator? If so, the respiratory generator should 
be made refractory to psychosocial stimuli generated 
by the CCU environment without suppressing respira-
tory genesis itself [174], and SB. This approach aims to 
alleviate increased respiratory drive and sympathetic 
hyperactivity, without resorting to general anesthesia 
and paralysis.

In COVID-ARDS, under paralysis+CMV, micro- or 
macrothrombi leads to high dead space, hypercapnia 
and a high respiratory drive: a low normal temperature 
(35-36°C) will help normalizing the VCO2 and hyper-
capnic drive, allowing for SB, under HFN/NIV.

7. O2
Hypoxemia, silent without or with overt failure, re-
quires immediate treatment. Nevertheless, alleviating 
hypoxemia is not the ultimate objective:

a. Improved oxygenation and reduced mortality are 
unrelated [233]. Thus, low SaO2 alone is not an indi-
cation for intubation [21]; rather labored breathing 
and impending/overt failure are.

b. In rats, inflammation increases in response to acu-
te hypoxia, independent of the degree of hypoxemia 
[234]. To address increased WOB, correction of 
hypoxemia per se is not the immediate goal.

c. In late-stage ARDS, hypoxemia is associated with 
increased RR and reversed by high FiO2 [78]. This 
holds true in early ARDS: in non-intubated non-pa-
ralyzed patients, the hypoxic drive should be suppre-
ssed by combining high FiO2 with the highest PEEP 
achievable with HFN/NIV. Permissive hypoxemia is 

avoided to lower Vt and RR,  ideally without hype-
roxemia (SaO2≥92-100%: roughly the flat portion of 
the dissociation curve).

d. Hypoxemia act as a transient stimulus, briefly enhan-
cing the ventilatory response to hypercapnia or me-
tabolic acidosis [74, 235] (“hypoxic ventilatory decli-
ne”). Given the hypocapnia observed in early ARDS 
[2, 117], the relevant stimulus is not hypoxemia but 
systemic acidosis or the metaboreflex (“originating 
in skeletal muscle activated when blood flow to con-
tracting muscles is insufficient to allow both O2 de-
livery and metabolite washout” [3]). Furthermore, 
a) age and diabetes blunt the response to hypoxemia 
[235]. b) in the setting of early ARDS, silent hypoxe-
mia may occur without dyspnea [73-75, 235].
Rather than simultaneously lowering the FiO2 and 

the PEEP [97], they are adjusted sequentially [37, 41, 
236].

a. Lowering FiO2: a) Absorption atelectasis [237] ne-
cessitates minimizing the duration of FiO2=1 admi-
nistration. b) The highest possible O2 flow sets PEEP 
as high as possible given the leaks observed under 
HFN/NIV. Hypoxemia improves in most patients 
with a moderate PEEP (5-15 cm H20) achieved with 
HFN/VHFN [121, 122]. Subsequently, with the hi-
ghest achievable PEEP and a successful response to 
the multimodal approach, FiO2 is gradually reduced 
from 1 to 0.4. 

b. Lowering PEEP: Under FiO2=0.4 and constant 
SaO2≥96%, PEEP is gradually reduced from ~15 
[122] to ~5 cm H20 [121], by flow reduction. As the 
mechanical properties of the lung improve slowly 
[238, 239], achieving a SaO2≥96% requires patien-
ce, in contrast to the rapid effects seen with recruit-
ment maneuvers [95]. If deterioration occurs again, 
it suggests i) investigating underlying causes such as 
sepsis, coronary occlusion, delirium ii) implemen-
ting helmet NIV in cases of persistent or worsening 
labored breathing iii) revisiting the entire multimo-
dal approach.

8. Position
The supine position worsens sick human (reduced 
FRC, increased abdominal pressure with atelectasis 
next to the diaphragm) [237]. Thus, the upright posi-
tion presents some rationale to improve oxygenation 
[7]. Nevertheless, the head up position may worsen 
compliance and driving pressure in late ARDS (“para-
doxical” positioning [240]). Furthermore, the ration-
ale for extended upright intervals in a healthy hu-
man does not automatically transfer to a sick biped. 
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To our knowledge, upright has not been documented 
in the setting of COVID-ARDS. As VHFN/NIV may 
evoke gastric dilation [2], the intraabdominal pressure 
should be reduced early (gastric and bladder catheters, 
enhanced intestinal motility).

 �Conclusion

This multimodal approach bases itself on progress 
in the pathophysiology of ARDS [2, 6, 8, 42, 43, 72]. 
This synthesis of autonomic, respiratory, circulatory 
and ventilatory physiological advances combines with 
technological advances to avoid intubation, unless “ab-
solutely necessary” [21]. Would this allow to reap “the 
far-reaching benefits of spontaneous yet highly supported 
ventilation in an awake, animated patient over invasive 
mechanical ventilation via endotracheal tube” [71]? A 
prospective randomized pilot trial, then a larger trial 
are required to ascertain the working hypotheses de-
lineated above.
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 �Appendix
This overview outlines a step-by-step escalation based 
on the severity of ARDS (HFN, VHFN, mask NIV, hel-
met NIV, invasive ventilation). Despite some research 
addressing these questions, there remains limited 
knowledge about SB compared to controlled mechani-
cal ventilation with and without paralysis.

A. Research questions

As of now, there is a lack of data regarding the measure-
ment of plateau pressure (Pplat) during a brief inspira-
tory hold in patients receiving non-invasive ventilation 
(NIV) without an endotracheal tube [137]. Lung me-
chanics must be re-evaluated specifically in the context 
of SB, both with and without intubation. This includes 
re-adressing in the setting of NIV all the parameters 
used for PS in the setting of invasive ventilation.

Is NIV success related to high PEEP and suppressed 
solid-like behavior and atelectrauma (reduced in-
spiratory effort consequence of improved mechanics 
(PEEP))? is NIV success related to adequate inspirato-
ry assistance and unloading the muscles? [36, 86, 117, 
143, 242];  are sick patients with a high drive homoge-
neous to less severe patients?

Delineate physiologically each factor (temperature, 
agitation, cardiac output, blood pressure, pH, PaCO2) 
involved in labored breathing, hyperpnea and large 
changes in esophageal pressure before [2, 72] or after 
[243, 244] intubation? If mortality is lower [39, 41], 
what is the mechanism: fever control [119, 245]? nor-
malized sympathetic activity? improved microcircula-
tion? lowered lactate? lowered inflammation? extended 
tolerance to NIV? minimized leaks and higher PEEP? 
absence of conventional sedation?

A normalized drive normalizes the WOB and sup-
presses SILI [5], early. Causality should be clarified: i) 
SILI is the limiting factor in early ARDS [48, 246] ii) 
increased WOB then overt failure is the limiting factor 
[20, 21] iii) both.

Readdress the RV and LV performance in the setting 
of SB vs CMV+GA?

Quantify the WOB vs. SaO2, a putative reduction of 
esophageal pressure changes and reduction of rate of 
intubation using VHFN>120 L.min-1? 

Do pharmacological tools exist to deactivate lung 
receptors (mechano-, A∂ and C, J) and minimize lung 
inflammation?

Adressing Vt in the setting of severe diffuse ARDS 
(2,4, 6, 8, etc. mL.kg-1) with or without veno-venous 
extracorporeal membrane oxygenation (ECMO), with 
or without low normal temperature (35-36°C)?

Document the effect of supine vs. proning vs. 
lateral+prone+lateral repositioning (physiology, CT 
scan, epidemiology)?

Document the effect of passive hyperventilation 
without sedation [114] on outcome?

Compare and combine tools to individualize PEEP : 
esophageal balloon vs impedance tomography vs lung 
echography?

In addition to the nasal prong, insertion of up to 
2 prongs through the mouth would achieve O2 flow 
~120-180 L.min-1. Do adequate numbers (SaO2) 
translate into improved outcome?

Readdress pressure support vs airway pressure re-
lease ventilation.

Assess partial muscle relaxation [144] in the setting 
of high Vt and helmet NIV on outcome ? does partial 
muscle relaxation allows for extended observation 
with improved outcome?

VHFN appears poorly tolerated, after 20 min [123]. 
The reason is unclear : poor humidification? high ex-
piratory resistance and expiratory WOB [123]?

Heightened sympathetic hyperactivity downregu-
lates beta-adrenergic receptors on lymphocytes; nor-
malized sympathetic activity upregulates beta adrener-
gic receptors [220]. Would this improve all adrenergic 
receptors on all immuno-competent cells? Would this 
lead to improved immuno-paralysis?

B. Randomized clinical trial

The PICO (patient, intervention, comparison, out-
come) question is: does combining new pathophysi-
ological information reduce intubation+controlled 
mandatory ventilation (CMV)+paralysis+deep se-
dation and improve outcome in the setting of early 
ARDS, manpower, bed and anesthetics shortage and 
mass influx of patients with baseline chronic inflam-
mation (e.g., COVID-ARDS)?

Following a pilot trial, a prospective trial should 
randomize patients, with outcome as the primary end-
point: 
1. Physiology: Patients presenting with high Vt and or 

large esophageal pressure swings or low P/F to a 2 h 
helmet trial, followed if negative with partial muscle 
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relaxation [144] to lower Vt~6 mL.kg-1. 
2. Multimodal approach (physiology + pharmacology): 

Patients presenting with high Vt and or large esopha-
geal pressure swings or low P/F to a 2 h helmet trial, 
followed if negative with partial muscle relaxation to 
lower Vt~6 mL.kg-1, combined to a multimodal ap-
proach as delineated in text (figure 1). 

3. State-of-the-art: Patients presenting with high Vt and 
or large esophageal pressure swings or low P/F to in-
tubation, controlled mechanical ventilation (driving 
pressure<14 cm H20, PEEP according to NIH table 
[97] or better to esophageal balloon [99, 100], general 
anesthesia+paralysis+proning as the state of the art 
in severe ARDS.


