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Abstract
Introduction: Determining the optimal timing for extubation in critically ill patients is essential to prevent complica-
tions. Predictive models based on Machine Learning (ML) have proven effective in anticipating weaning success, 
thereby improving clinical outcomes.
Aim of the study: The study aimed to evaluate the predictive capacity of five ML techniques, both supervised and 
unsupervised, applied to the spontaneous breathing trial (SBT), objective cough measurement (OCM), and diaphrag-
matic contraction velocity (DCV) to estimate a favorable outcome of SBT and extubation in critically ill patients.
Material and Methods: A post hoc analysis conducted on the COBRE-US study. The study included ICU patients who 
underwent evaluation of SBT, OCM, and DCV. Five ML techniques were applied: unsupervised and supervised to the 
data in both a training group and a test group. The diagnostic performance of each method was determined using 
accuracy. 
Results: In predicting SBT success, all supervised methods displayed the same accuracy in the training group (77.3%) 
and in the test group (69.6%). In predicting extubation success, decision trees demonstrated the highest diagnostic 
accuracy, 89.8% for the training group and 95.7% for the test group. The other supervised methods also showed a 
good diagnostic accuracy: 85.9% for the training group and 93.5% for the test group.
Conclusions: In predictive models using OCM, DCV, and SBT as input variables through five ML techniques, decision 
trees and artificial neural networks demonstrated the best diagnostic performance. This suggests that these models 
can effectively classify patients who are likely to succeed in SBT and extubation during the weaning process from 
mechanical ventilation.
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 �Introduction 

Invasive mechanical ventilation (IMV) involves endotra-
cheal intubation to allow the ventilator to deliver oxygen 
to the lungs through positive pressure, preventing alveo-
lar collapse during this process [1,2]. Successful weaning 
(SW) from ventilation is defined as the absence of venti-

latory support for at least 48 hours after extubation [3,4]. 
Weaning failure (WF) occurs when a patient does not 
pass the SBT and needs reintubation or dies within 48 
hours following extubation [4,5]. Approximately 15.6% 
of intubated patients may develop WF , which is associ-
ated with variables such as prolonged mechanical venti-
lation, advanced age, among others [3-6].
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Comprehensive evaluation and the development of 
predictive models that consider clinical variables such 
as SBT, cough strength, acid-base balance, oxygen 
parameters, diaphragmatic ultrasonographic charac-
teristics, pulmonary compliance, and diaphragmatic 
function have allowed for the estimation of the risk of 
weaning and extubation failure [3,4,7]. However, the 
extensive amount of clinical information can make syn-
thesis and interpretation difficult. Therefore, predictive 
models based on ML can be used to leverage their abil-
ity to detect patterns and analyze large amounts of in-
formation [8,9].

Currently, ML is a useful tool in constructing predic-
tion models for SW [8-16]. Otaguro et al. [14] analyzed 
the utility and accuracy of ML to predict WS within the 
next 72 hours. The three algorithms used in this study 
showed an area under the receiver operating charac-
teristic curve (AUROC) of 0.950 for LightGBM, 0.946 
for XGBoost, and 0.930 for Random Forest. These 
models utilized variables such as the duration of me-
chanical ventilation, inspired oxygen fraction, positive 
end-expiratory pressure, maximum and mean airway 
pressures, and the Glasgow Coma Scale [14]. However, 
an ML model must adequately balance clinical charac-
teristics, laboratory tests, and bedside assessments to 
ensure the model’s validity and biological plausibility 
[8,14,16].

The COBRE-US trial evaluated various tests to de-
termine success in SBT and extubation [7]. An equa-
tion derived from cough assessment and diaphragmatic 
contraction velocity (DCV), with a threshold of ≥ 0.83, 
showed an accuracy of 76.2%. Conversely, the success 
of extubation, calculated using a formula that incor-
porates SBT, OCM, and DCV with a cutoff of ≥ 1.25, 
demonstrated an accuracy of 91.5% [7]. However, the 
development of new predictive models or the improve-
ment of existing ones could reduce the risk of reintuba-
tion and decrease complications such as morbidity and 
mortality associated with extubation failure [8,14-16].

Statistical models like logistic regressions cannot 
represent complex and non-linear relationships in 
clinical data, limiting their accuracy and robustness 
for predicting future events based solely on stationary 
variables [9,10]. The use of artificial intelligence (AI) 
as a viable tool to enhance the predictive capability 
of clinical variables in critically ill patients requiring 
IMV could have a positive impact on clinical outcomes 
[8,14]. Therefore, we believe that applying machine 
learning techniques to the clinical variables included 

in logistic regression models, specifically developed 
to predict success in the spontaneous breathing trial 
and extubation [7], could improve predictive capabil-
ity compared to using any of these methods separately 
[8,16]. Considering the good results obtained with 
logistic regression predictive models described in the 
study by Varón-Vega et al. [7], we decided to optimize 
these results using five AI techniques, both supervised 
and unsupervised.

 �Material and Methods
We conducted a multicenter, observational analysis in 
adult patients requiring IMV in four ICUs in Bogotá, 
Colombia. Recruitment took place between February 
2019 and November 2021. The primary objective was 
to apply AI to the results of the study by Varón-Vega et 
al. [7], using ML techniques to predict success of SBT 
and extubation. 

Eligibility Criteria

Inclusion criteria for the study were adult patients aged 
18 and older who needed IMV for over 48 hours and 
fulfilled the requirements to begin the weaning pro-
cess. Patients were required to exhibit a robust cough, 
show no respiratory secretions, and have resolved the 
acute phase of the condition that necessitated IMV. 
They must have a stable cardiac state, without the 
need for vasopressor support or with minimal doses, 
an acid-base balance, euthermia, hemoglobin >7 g/dl, 
a Glasgow Coma Scale score >12, and negative Con-
fusion Assessment Method for the ICU (CAM-ICU). 
Additionally, the patient must maintain a SaO2 >90% 
with FiO2 ≤0.4, a PaO2/FiO2 ratio >150 mmHg, and 
a PEEP ≤8 cm H2O. Patients with acute brain injury, 
neuro-surgical intervention, pregnant women, and 
those with neuropsychiatric diseases or diaphragmatic 
paralysis were excluded from the study.

Variables

Variables analyzed included sociodemographic vari-
ables, the cause of respiratory failure, arterial blood 
gases before extubation, the mode of ventilation dur-
ing the weaning process, duration of weaning, days 
from ICU admission to the start of weaning, and the 
total length of stay in the ICU. Patients at risk of WF 
were treated with non-invasive mechanical ventilation 
(NIMV) or high-flow nasal cannula (HFNC) oxygen 
therapy.  
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All patients underwent a 30-minute SBT using a T-

piece or pressure support ventilation [6,17]. The cri-
teria for test failure are described in the Appendix 1. 
The SBT was discontinued in cases of test intolerance 
[6-17].

In the OCM, normal saline (0.9%) was infused via 
closed suction at the end of inspiration, and peak ex-
piratory flow during the resulting involuntary cough 
was measured [18]. Ventilatory parameters were set to 
spontaneous mode without assistance during cough 
assessment. The objective classification of peak expira-
tory flow induced by cough is described in the Appen-
dix 2 [18].

A diaphragmatic ultrasound in M-mode was per-
formed to measure DCV (slope, cm/s) from three 
consecutive normal breaths, with average values used 
in the analysis [19-21]. Assessments were conducted 
with the patient in a supine position, utilizing either a 
subcostal or intercostal approach at the midclavicular 
or anterior axillary lines. The chosen side for measure-
ment depended on technical ease and the clinical judg-
ment of the ultrasound evaluator.

Analysis Methods

Five ML techniques were used to predict success of SBT 
and extubation. OCM and DCV were used as predic-
tors for SBT success. On the other hand, OCM, DCV, 
and successful SBT were used as predictors for extuba-
tion success. The study employed five ML techniques, 
which included two unsupervised methods (hierarchi-
cal clustering and k-means clustering) and three su-
pervised methods (support vector machines, decision 
trees, and neural networks) [22,23]. Each technique 
underwent training using 10-fold cross-validation. 
Furthermore, patients were randomly allocated to ei-
ther the training or test group in a 90/10 ratio. This al-
location created a test group that was not involved in 
training ML techniques [22,23]. This approach enables 
the assessment of the system’s predictive performance 
on both the training samples and on new samples, mir-
roring a real-world scenario. 

The unsupervised methods were used to let the com-
puter try to find patterns that might reveal interesting 
associations. Hierarchical clustering groups patients de-
pending on how similar they are, forming pairs and then 
grouping similar pairs to form a dendrogram [22,23]. 
On the other hand, k-means clustering groups classify 
patients by grouping them according to their location 
in an n-dimensional space. Regarding the supervised 

methods, the decision tree is like a series of yes or no 
questions that are easily understood and can be clini-
cally replicated. Support vector machines are a method 
that involves finding an n-dimensional surface equation 
that separates the patients into an n-dimensional space 
[22,23]. And artificial neural networks simulate human 
brain function by having layers of nodes (neurons) con-
nected and in each node, mathematical operations are 
applied to the data, leading to a classification probability 
for each class of patient [22,23].

The classification of patients by each technique, both 
in the training and test samples, was compared with the 
actual clinical outcomes. The diagnostic performance 
of each method was determined using accuracy, sensi-
tivity, specificity, positive predictive value (PPV), and 
negative predictive value (NPV) [22-24].

Statistical Analysis

Categorical variables are reported as both absolute and 
relative frequencies [24]. Continuous variables are de-
scribed using means and standard deviations (SD) or 
medians and interquartile ranges (IQR), based on their 
distribution. The Shapiro-Wilk test was used to evalu-
ate the distribution of continuous variables [24].

Data Analysis and Modeling Software

Data were collected using REDCap software (25). Ma-
chine learning models were trained and tested using 
MATLAB Release 2023a (The MathWorks, Inc., Natick, 
Massachusetts, USA). Data were analyzed using IBM 
SPSS software (25, IBM Corp., Chicago, IL, US).

Ethical considerations

The studies involving human participants were re-
viewed and approved by the Ethics Committee of the 
Fundación Neumológica Colombiana (approval num-
ber: 201806-23607). Although it is considered minimal 
risk research, in which no intervention will be carried 
out, the signature of an informed consent was collected.

 �Results
The study included 367 patients, of whom 219 (59.7%) 
were male. The median age was 61 years, with a range of 
18 to 88 years. The mean weight was 70 kg (IQR 60 – 80 
kg) and the mean height was 163.6 cm (SD 10 cm). The 
median BMI was 25.3 kg/m² (IQR 21.7 – 29.1 kg/m²).  
General characteristics of the population are described 
in Table 1.
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Etiology of Respiratory Failure

Seventy-five percent (261/367) of the cases were at-
tributed to hypoxemia (PaO2 < 60, usual FiO2), 14.9% 
(52/367) to ventilatory failure due to shock, followed 
by 6.6% (23/367) due to hypercapnia (pH < 7.25, el-
evated CO2) (Table 2). Ninety-four percent (345/367) 
of the population were admitted to the ICU for medical 
reasons.

Success in Spontaneous Breathing Trial

The unsupervised methods did not find any interest-
ing patterns and did not have a good classification 
rate. Among the supervised methods, decision trees 
achieved the highest accuracy in both the training 
group (77.3%) and test group (69.6%) (Table 3). The 
other supervised methods, support vector machines 
and neural networks, demonstrated the same diagnos-
tic accuracy: 77.3% for the training group and 69.6% 
for the test group.

Extubation Success

Like before, the unsupervised methods did not find 
any interesting patterns and did not show good clas-
sification rate. In this case, the decision trees also dem-
onstrated the best diagnostic accuracy with 85.9% for 
the training group and 95.7% for the test group (Table 
4). The support vector machines and neural networks 
both achieved a diagnostic accuracy of 85.9% for the 
training group and 93.5% for the test group.

 �Discussion
This study investigated the diagnostic performance of 
ML in predicting the success of the SBT and successful 
extubation, based on OMC, DCV, and SBT. Among the 
various combinations evaluated, decision trees and ar-
tificial neural networks demonstrated the best diagnos-
tic performance. This finding suggests that these fea-
tures have the potential to accurately classify patients 
who are likely to succeed in the SBT and extubation 
during the weaning process.

Our results indicate the potential for an AI-based 
decision support system that complements and im-
proves upon simple predictive models constructed 
with routinely used clinical variables in patients re-
quiring extubation in the ICU [7,18]. We believe these 
findings could encourage the adoption of ML in criti-
cal care, given that physicians often underestimate and, 
consequently, distrust the potential clinical benefits of 
supervised techniques such as decision trees and artifi-
cial neural networks [8,9,15,26].

Otaguro et al. [14] investigated the utility and accura-
cy of ML using three algorithms (Random Forest, XG-
Boost, and LightGBM) to predict extubation success, 
employing 57 clinical variables that included patient 
demographics, vital signs, laboratory results, and ven-
tilator information. The results showed an accuracy of 
0.897 for Random Forest, 0.910 for XGBoost, and 0.927 
for LightGBM. In contrast, our study relies on bedside 
tests and ultrasonographic measurements validated in 
epidemiological studies to predict extubation success, 
thus enhancing predictive capacity by combining statis-
tical and AI techniques [26-28]. Moreover, using a re-
duced number of input variables can improve real-time 
utility in the ICU and facilitate better physician under-
standing of the pre-prediction analysis process [26-28].

Our study aimed to develop a predictive model uti-
lizing the SBT, routinely performed during the wean-

Table 1. General Characteristics of the Population.

Variables  n (%) Values
Male  n (%) 219 (59,7)
Age , median (Range) 61 (18-88)
Weight	in	kg,	median	(IQR) 70 (60 – 80)
Height	in	cm,	mean	(SD) 163,6 (10)
Body	Mass	Index	(BMI)	in	kg/m²,	
median	(IQR) 25,3 (21,7 – 29,1)

Active	smoking,	n	(%) 33 (9)
Alcoholism	n	(%) 22 (6)
Comorbidities,  n (%) 
Diabetes	Mellitus	
Hypertension	
Asthma	
Pulmonary	Fibrosis
Chronic	Kidney	Disease	
Chronic	Liver	Disease

113 (30,8)
173 (47,1)

8 (2,2)
6 (1,6)

69 (18,8)
17 (4,6)

SD: Standard Deviation IQR: Interquartile Range.

Table 2. Etiology of Respiratory Failure and Reason for 
Admission to Intensive Care

Variables Values
Shock,	n(%)
Hypercapnia (pH < 7,25, CO2 elevated) , n(%)
Hypoxemia	(PaO2	<	60,	usual	FiO2)	,	n(%)
Neuromuscular,	n(%)
Perioperative,	n(%)	

52 (14,9)
23 (6,6)
261 (75)
2 (0,6)

10 (2,9)
Reason	for	ICU	Admission,	n	(%)	
Medical
Surgical	(post-surgical	only)

345 (94)
22 (6)

ICU: Intensive Care Unit.
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ing process, due to its critical role as an indicator of 
weaning outcomes in ICU patients [7,29-31]. Although 
AI can analyze large datasets and uncover patterns that 
might elude the medical team and conventional statis-
tical methods like logistic regressions, the reliability of 
input data such as the SBT and its ability to accurately 
predict extubation success were crucial for developing 
a more precise model [29,31].

To explore a wide range of possibilities, five ma-
chine learning techniques were implemented [32,33]. 
Initially, clustering techniques were used to analyze 
the behavior of our variables; however, their diagnos-
tic performance did not reach the level of supervised 
methods. Among the supervised techniques, a simple 
decision tree was tested due to its ease of understand-
ing and application in clinical practice [28,32,33]. Sup-
port vector machines, which can be very heavy compu-
tationally, were employed for their usual effectiveness 
in separating data in multidimensional spaces. Finally, 
despite being the most complex and challenging to in-
terpret, artificial neural networks are the most cited in 
the available literature and proved to be the most ef-
fective in most health related issues [27,28,32,33]. In 

our case, the decision trees were the technique that ob-
tained the highest classification performance.

Limitations and Strengths

The observational nature of our study exposes it to the 
risk of confounding factors. Although our goal was to 
develop a parsimonious predictive model, we acknowl-
edge the importance of considering additional clinical 
variables, such as laboratory tests, risk scores, ventila-
tion time, and ventilator settings, to more robustly and 
clinically substantiate predictions for patients undergo-
ing weaning in ICU, ensuring a more accurate diagno-
sis by intensivists. Furthermore, dimensionality reduc-
tion through principal component analysis could be 
considered. A limitation of this study is the potential 
influence of confounding biases on the findings, which 
should be interpreted within the context of a prospec-
tive, multicenter observational study, emphasizing the 
need for external validation of the results.

This study’s strengths are attributed to its prospec-
tive design and multicenter approach, derived from the 
study conducted by Varón-Vega et al. [7]. This post hoc 
analysis incorporates diaphragmatic ultrasound, OCM, 

Table 3. Machine Learning Methods for Predicting Success in Spontaneous Breathing Trial

Model Study Variable Accuracy Sensitivity Specificity PPV NVP
k-means SBT*	training 64,0 72,6 31,5 79,9 23,5

SBT	*	test 63,0 72,0 35,7 72,7 38,5
Hierarchical	Clustering SBT	*	training 52,7 53,3 50,7 80,2 22,4

SBT	*	test 60,9 54,9 64,3 79,2 40,9
Decision	Trees SBT	*	training 77,3 99,9 1,1 NI 1,0

SBT	*	test 69,6 99,9 1,0 NI 1,0
Support	Vector	Machines SBT	*	training 77,3 99,9 1,1 NI 1,0

SBT	*	test 69,6 99,9 1,1 NI 1,0
Neural	Networks SBT	*	training 77,3 99,9 1,0 NI 1,0

SBT	*	test 69,6 99,9 1,0 NI 1,0
SBT: Spontaneous Breathing Trial; NI: Not Informed (occurs when division by zero is encountered). PPV: Positive Predictive Value; NPV: Negative Predictive Value. * Objective Measurement of Cough and 
Diaphragmatic Contraction Velocity

Table 4. Machine Learning Methods for Predicting Extubation Success 

Model Study Variable Accuracy Sensitivity Specificity PPV NVP
k-means SBT*	training 63,4 74,4 35,1 74,7 34,7

SBT	*	test 63,0 76,7 37,5 69,8 46,2
Hierarchical	Clustering SBT	*	training 66,4 91,6 8,0 69,7 31,4

SBT	*	test 65,2 90,0 18,8 67,5 50
Decision	Trees SBT	*	training 89,8 98,3 70,4 94,6 68,7

SBT	*	test 95,7 99,9 87,5 99,9 68,7
Support	Vector	Machines SBT	*	training 85,9 99,0 56,0 95,9 55

SBT	*	test 93,5 99,9 81,3 99,9 81,3
Neural	Networks SBT	*	training 85,9 99,0 56,0 95,9 55

SBT	*	test 93,5 99,9 81,3 99,9 81,3
SBT: Spontaneous Breathing Trial; PPV: Positive Predictive Value; NPV: Negative Predictive Value. * Objective Measurement of Cough, Diaphragmatic Contraction Velocity, and Spontaneous Breathing Trial
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and bedside tests into its predictive models, which have 
been validated with good reproducibility and predic-
tive capability when used individually or in combina-
tion. Additionally, intensive care staff were trained to 
perform transthoracic ultrasound and tests. However, 
further research is needed to explore the potential of 
different models that include other clinical variables.

 �Conclusion
Among the predictive models that used MOT, VCD, 
and the SBT as input variables through five machine 
learning techniques, decision trees and artificial neu-
ral networks demonstrated the best diagnostic perfor-
mance. These models excelled in accurately classifying 
patients regarding success in the SBT and extubation 
during the weaning process.
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Appendix 1. Criteria for Failure of Spontaneous Breathing Test

Appendic 2. Objective evaluation of cough.


