Lung protective mechanical ventilation (LPV) even in patients with healthy lungs is associated with a lower incidence of postoperative pulmonary complications (PPC). The pathophysiology of ventilator-induced lung injury and the risk factors of PPCs have been widely identified, and a perioperative lung protective concept has been elaborated. Despite the well-known advantages, results of recent studies indicated that intraoperative LPV is still not widely implemented in current anaesthesia practice.
No nationwide surveys regarding perioperative pulmonary protective management have been carried out previously in Hungary. This study aimed to evaluate the routine anaesthetic care and adherence to the LPV concept of Hungarian anaesthesiologists during major abdominal surgery.
A questionnaire of 36 questions was prepared, and anaesthesiologists were invited by an e-mail and a newsletter to participate in an online survey between January 1st to March 31st, 2018.
A total of one hundred and eleven anaesthesiologists participated in the survey; 61 (54.9%), applied low tidal volumes, 30 (27%) applied the entire LPV concept, and only 6 (5.4%) regularly applied alveolar recruitment manoeuvres (ARM). Application of low plateau and driving pressures were 40.5%. Authoritatively written protocols were not available resulting in markedly different perioperative pulmonary management. According to respondents, the most critical risk factors of PPCs are chronic obstructive pulmonary diseases (103; 92.8%); in contrast malnutrition, anaemia or prolonged use of nasogastric tube were considered negligible risk factors. Positive end-expiratory pressure (PEEP) and regular ARM are usually ignored. Based on the survey, more attention should be given to the use of LPV.
Perioperative Lung Protective Ventilatory Management During Major Abdominal Surgery: A Hungarian Nationwide Survey
DOI: 10.2478/jccm-2019-0002
Keywords: alveolar recruitment manoeuvres, postoperative pulmonary complications, perioperative respiratory protocols, lung protective ventilation, low tidal volumes, positive end-expiratory pressure
Full text: PDF