Tag Archives: traumatic brain injury

The Impact of Hyperoxia Treatment on Neurological Outcomes and Mortality in Moderate to Severe Traumatic Brain Injured patients

DOI: 10.2478/jccm-2021-0014

Background: Traumatic brain injury is a leading cause of morbidity and mortality worldwide. The relationship between hyperoxia and outcomes in patients with TBI remains controversial. We assessed the effect of persistent hyperoxia on the neurological outcomes and survival of critically ill patients with moderate-severe TBI.
Method: This was a retrospective cohort study of all adults with moderate-severe TBI admitted to the ICU between 1st January 2016 and 31st December 2019 and who required invasive mechanical ventilation. Arterial blood gas data was recorded within the first 3 hours of intubation and then after 6-12 hours and 24-48 hours. The patients were divided into two categories: Group I had a PaO2 < 120mmHg on at least two ABGs undertaken in the first twelve hours post intubation and Group II had a PaO2 ≥ 120mmHg on at least two ABGs in the same period. Multivariable logistic regression was performed to assess predictors of hospital mortality and good neurologic outcome (Glasgow outcome score ≥ 4).
Results: The study included 309 patients: 54.7% (n=169) in Group I and 45.3% (n=140) in Group II. Hyperoxia was not associated with increased mortality in the ICU (20.1% vs. 17.9%, p=0.62) or hospital (20.7% vs. 17.9%, p=0.53), moreover, the hospital discharge mean (SD) Glasgow Coma Scale (11.0(5.1) vs. 11.2(4.9), p=0.70) and mean (SD) Glasgow Outcome Score (3.1(1.3) vs. 3.1(1.2), p=0.47) were similar. In multivariable logistic regression analysis, persistent hyperoxia was not associated with increased mortality (adjusted odds ratio [aOR] 0.71, 95% CI 0.34-1.35, p=0.29). PaO2 within the first 3 hours was also not associated with mortality: 121-200mmHg: aOR 0.58, 95% CI 0.23-1.49, p=0.26; 201-300mmHg: aOR 0.66, 95% CI 0.27-1.59, p=0.35; 301-400mmHg: aOR 0.85, 95% CI 0.31-2.35, p=0.75 and >400mmHg: aOR 0.51, 95% CI 0.18-1.44, p=0.20; reference: PaO2 60-120mmHg within 3 hours. However, hyperoxia >400mmHg was associated with being less likely to have good neurological (GOS ≥4) outcome on hospital discharge (aOR 0.36, 95% CI 0.13-0.98, p=0.046; reference: PaO2 60-120mmHg within 3 hours.
Conclusion: In intubated patients with moderate-severe TBI, hyperoxia in the first 48 hours was not independently associated with hospital mortality. However, PaO2 >400mmHg may be associated with a worse neurological outcome on hospital discharge.

Full text: PDF

Oxidative Stress and Antioxidant Therapy in Critically Ill Polytrauma Patients with Severe Head Injury

DOI: 10.1515/jccm-2015-0014

Traumatic Brain Injury (TBI) is one of the leading causes of death among critically ill patients from the Intensive Care Units (ICU). After primary traumatic injuries, secondary complications occur, which are responsible for the progressive degradation of the clinical status in this type of patients. These include severe inflammation, biochemical and physiological imbalances and disruption of the cellular functionality. The redox cellular potential is determined by the oxidant/antioxidant ratio. Redox potential is disturbed in case of TBI leading to oxidative stress (OS). A series of agression factors that accumulate after primary traumatic injuries lead to secondary lesions represented by brain ischemia and hypoxia, inflammatory and metabolic factors, coagulopathy, microvascular damage, neurotransmitter accumulation, blood-brain barrier disruption, excitotoxic damage, blood-spinal cord barrier damage, and mitochondrial dysfunctions. A cascade of pathophysiological events lead to accelerated production of free radicals (FR) that further sustain the OS. To minimize the OS and restore normal oxidant/antioxidant ratio, a series of antioxidant substances is recommended to be administrated (vitamin C, vitamin E, resveratrol, N-acetylcysteine). In this paper we present the biochemical and pathophysiological mechanism of action of FR in patients with TBI and the antioxidant therapy available.

Full text: PDF